TY - JOUR
T1 - Multigeneration cross-contamination of mail with Bacillus anthracis spores
AU - Edmonds, Jason
AU - Lindquist, H. D.Alan
AU - Sabol, Jonathan
AU - Martinez, Kenneth
AU - Shadomy, Sean
AU - Cymet, Tyler
AU - Emanuel, Peter
N1 - Funding Information:
Disclaimer: The Department of Defense, Edgewood Chemical Biological Center, Department of Health and Human Services Centers for Disease Control and Prevention, National Institutes for Occupational Safety and Health, Department of Justice, Federal Bureau of Investigations, and the U.S. Environmental Protection Agency through its Office of Research and Development partially funded and collaborated in the research described here. This manuscript has been subject to Agency review and but does not necessarily reflect the views of the Agencies listed above. No official endorsement should be inferred. Mention or use of trade names does not constitute endorsement of recommendation for use.
Publisher Copyright:
© 2016, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
PY - 2016/4
Y1 - 2016/4
N2 - The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.
AB - The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.
UR - http://www.scopus.com/inward/record.url?scp=84965143994&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84965143994&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0152225
DO - 10.1371/journal.pone.0152225
M3 - Article
C2 - 27123934
AN - SCOPUS:84965143994
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 4
M1 - e0152225
ER -