MTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation

Olesya Chornoguz, Robert S. Hagan, Azeb Haile, Matthew L. Arwood, Christopher J. Gamper, Arnob Banerjee, Jonathan D. Powell

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFN-g under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4+ T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-g expression. Single phosphorylation site mutants still support induction of IFN-g expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-g expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.

Original languageEnglish (US)
Pages (from-to)3939-3948
Number of pages10
JournalJournal of Immunology
Issue number10
StatePublished - May 15 2017

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology


Dive into the research topics of 'MTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation'. Together they form a unique fingerprint.

Cite this