Abstract
PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a+/- mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a+/- mice when bred within the Rb1+/- or Trp53+/- back-grounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a+/- Trp53+/- mice developed more sarcomas than Trp53+/- mice (P < 0.05) and Prkar1a+/- Rb1+/- mice grew more (and larger) pituitary and thyroid tumors than Rb1+/- mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a+/- mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT-PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a+/- mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling acti-vation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects.
Original language | English (US) |
---|---|
Article number | ddq014 |
Pages (from-to) | 1387-1398 |
Number of pages | 12 |
Journal | Human molecular genetics |
Volume | 19 |
Issue number | 8 |
DOIs | |
State | Published - Jan 15 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Biology
- Genetics
- Genetics(clinical)