TY - GEN
T1 - Motorized force-sensing micro-forceps with tremor cancelling and controlled micro-vibrations for easier membrane peeling
AU - Gonenc, Berk
AU - Gehlbach, Peter
AU - Handa, James
AU - Taylor, Russell H.
AU - Iordachita, Iulian
PY - 2014/9/30
Y1 - 2014/9/30
N2 - Retinal microsurgery requires the manipulation of extremely delicate tissues by various micron scale maneuvers and the application of very small forces. Among vitreoretinal procedures, membrane peeling is a standard procedure requiring the delamination of a very thin fibrous membrane on the retina surface. This study presents the development and evaluation of an integrated assistive system for membrane peeling. This system combines a force-sensing motorized microforceps with an active tremor-canceling handheld micromanipulator, Micron. The proposed system (1) attenuates hand-tremor when accurate positioning is needed, (2) provides auditory force feedback to keep the exerted forces at a safe level, and (3) pulsates the tool tip at high frequency to provide ease in delaminating membranes. Experiments on bandages and raw chicken eggs have revealed that controlled micro-vibrations provide significant ease in delaminating membranes. Applying similar amount of forces, much faster delamination was observed when the frequency of these vibrations were increased (up to 50 Hz).
AB - Retinal microsurgery requires the manipulation of extremely delicate tissues by various micron scale maneuvers and the application of very small forces. Among vitreoretinal procedures, membrane peeling is a standard procedure requiring the delamination of a very thin fibrous membrane on the retina surface. This study presents the development and evaluation of an integrated assistive system for membrane peeling. This system combines a force-sensing motorized microforceps with an active tremor-canceling handheld micromanipulator, Micron. The proposed system (1) attenuates hand-tremor when accurate positioning is needed, (2) provides auditory force feedback to keep the exerted forces at a safe level, and (3) pulsates the tool tip at high frequency to provide ease in delaminating membranes. Experiments on bandages and raw chicken eggs have revealed that controlled micro-vibrations provide significant ease in delaminating membranes. Applying similar amount of forces, much faster delamination was observed when the frequency of these vibrations were increased (up to 50 Hz).
UR - http://www.scopus.com/inward/record.url?scp=84918522417&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84918522417&partnerID=8YFLogxK
U2 - 10.1109/biorob.2014.6913784
DO - 10.1109/biorob.2014.6913784
M3 - Conference contribution
AN - SCOPUS:84918522417
T3 - Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
SP - 244
EP - 251
BT - "2014 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014
A2 - Carloni, Raffaella
A2 - Masia, Lorenzo
A2 - Sabater-Navarro, Jose Maria
A2 - Ackermann, Marko
A2 - Agrawal, Sunil
A2 - Ajoudani, Arash
A2 - Artemiadis, Panagiotis
A2 - Bianchi, Matteo
A2 - Lanari Bo, Antonio Padilha
A2 - Casadio, Maura
A2 - Cleary, Kevin
A2 - Deshpande, Ashish
A2 - Formica, Domenico
A2 - Fumagalli, Matteo
A2 - Garcia-Aracil, Nicolas
A2 - Godfrey, Sasha Blue
A2 - Khalil, Islam S.M.
A2 - Lambercy, Olivier
A2 - Loureiro, Rui C. V.
A2 - Mattos, Leonardo
A2 - Munoz, Victor
A2 - Park, Hyung-Soon
A2 - Rodriguez Cheu, Luis Eduardo
A2 - Saltaren, Roque
A2 - Siqueira, Adriano A. G.
A2 - Squeri, Valentina
A2 - Stienen, Arno H.A.
A2 - Tsagarakis, Nikolaos
A2 - Van der Kooij, Herman
A2 - Vanderborght, Bram
A2 - Vitiello, Nicola
A2 - Zariffa, Jose
A2 - Zollo, Loredana
PB - IEEE Computer Society
T2 - 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014
Y2 - 12 August 2014 through 15 August 2014
ER -