Abstract
This article discusses extensions of generalized linear models for the analysis of longitudinal data. Two approaches are considered: subject-specific (SS) models in which heterogeneity in regression parameters is explicitly modelled; and population-averaged (PA) models in which the aggregate response for the population is the focus. We use a generalized estimating equation approach to fit both classes of models for discrete and continuous outcomes. When the subject-specific parameters are assumed to follow a Gaussian distribution, simple relationships between the PA and SS parameters are available. The methods are illustrated with an analysis of data on mother's smoking and children's respiratory disease.
Original language | English (US) |
---|---|
Pages (from-to) | 1049-1060 |
Number of pages | 12 |
Journal | Biometrics |
Volume | 44 |
Issue number | 4 |
DOIs | |
State | Published - 1988 |
ASJC Scopus subject areas
- Statistics and Probability
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics