Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis

Wei Lu, Junhui Sun, Jeong Seon Yoon, Yan Zhang, Lixin Zheng, Elizabeth Murphy, Mark P. Mattson, Michael J. Lenardo

Research output: Contribution to journalArticlepeer-review

69 Scopus citations


Necroptosis as a molecular program, rather than simply incidental cell death, was established by elucidating the roles of receptor interacting protein (RIP) kinases 1 and 3, along with their downstream partner, mixed lineage kinase-like domain protein (MLKL). Previous studies suggested that phosphoglycerate mutase family member 5(PGAM5), a mitochondrial protein that associates with RIP1/RIP3/MLKL complex, promotes necroptosis. We have generated mice deficient in the pgam5 gene and surprisingly found PGAM5-deficiency exacerbated rather than reduced necroptosis in response to multiple in vitro and in vivo necroptotic stimuli, including ischemic reperfusion injury (I/R) in the heart and brain. Electron microscopy, biochemical, and confocal analysis revealed that PGAM5 is indispensable for the process of PINK1 dependent mitophagy which antagonizes necroptosis. The loss of PGAM5/PINK1 mediated mitophagy causes the accumulation of abnormal mitochondria, leading to the overproduction of reactive oxygen species (ROS) that worsen necroptosis. Our results revise the former proposal that PGAM5 acts downstream of RIP1/RIP3 to mediate necroptosis. Instead, PGAM5 protects cells from necroptosis by independently promoting mitophagy. PGAM5 promotion of mitophagy may represent a therapeutic target for stroke, myocardial infarction and other diseases caused by oxidative damage and necroptosis.

Original languageEnglish (US)
Article numbere0147792
JournalPLoS One
Issue number1
StatePublished - Jan 1 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences
  • General Biochemistry, Genetics and Molecular Biology
  • General Medicine


Dive into the research topics of 'Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis'. Together they form a unique fingerprint.

Cite this