TY - JOUR
T1 - Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring
AU - Wu, Yao
AU - Tehrani, Farshad
AU - Teymourian, Hazhir
AU - Mack, John
AU - Shaver, Alexander
AU - Reynoso, Maria
AU - Kavner, Jonathan
AU - Huang, Nickey
AU - Furmidge, Allison
AU - Duvvuri, Andrés
AU - Nie, Yuhang
AU - Laffel, Lori M.
AU - Doyle, Francis J.
AU - Patti, Mary Elizabeth
AU - Dassau, Eyal
AU - Wang, Joseph
AU - Arroyo-Currás, Netzahualcóyotl
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/6/14
Y1 - 2022/6/14
N2 - The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
AB - The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
UR - http://www.scopus.com/inward/record.url?scp=85132045696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132045696&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.2c00829
DO - 10.1021/acs.analchem.2c00829
M3 - Article
C2 - 35653647
AN - SCOPUS:85132045696
SN - 0003-2700
VL - 94
SP - 8335
EP - 8345
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 23
ER -