Micro-MRI methods to detect renal cysts in mice

Hisataka Kobayashi, Satomi Kawamoto, Martin W. Brechbiel, Sang Kyung Jo, Xuzhen Hu, Tianxin Yang, Bhalchandra A. Diwan, Thomas A. Waldmann, Jurgen Schnermann, Peter L. Choyke, Robert A. Star

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Background. Mouse models of disease, especially using transgenic and knockout technologies, are powerful tools to analyze the molecular basis of disease. We recently reported that a new dynamic micro-MRI method with dendrimer-based contrast agents can visualize renal structure and function in normal living mice and mice with acute renal failure. While MRI contrast enhancement is useful for detecting functional impairment of the kidneys, this technology has limitations in assessing morphologic changes, particularly cystic disease, because contrast-enhanced micro-MRI depicts cysts as low-intensity areas that cannot be distinguished from fibrotic foci. Methods. In the current study, we evaluated if micro-MRI employing a new three-dimensional MR hydrography signal sequence [three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA)] can visualize chronic cystic changes without any contrast agents. Results. We were able to positively depict multiple renal cortical cysts of ∼0.2 mm diameter in a mouse model of sickle cell disease and observe serial changes of renal cysts (>0.2 mm diameter) in cyclooxygenase-2 (COX-2) knockout mice during a 21/2-month period. Some cysts decreased in size over time. Conclusions. Micro-MRI with 3D-FIESTA can depict cyst formation in the diseased kidneys of living mice without injection of contrast agents.

Original languageEnglish (US)
Pages (from-to)1511-1516
Number of pages6
JournalKidney international
Volume65
Issue number4
DOIs
StatePublished - Apr 2004

Keywords

  • COX-2
  • Chronic kidney disease
  • Cyst
  • Kidney
  • Magnetic resonance imaging
  • Sickle cell disease

ASJC Scopus subject areas

  • Nephrology

Fingerprint

Dive into the research topics of 'Micro-MRI methods to detect renal cysts in mice'. Together they form a unique fingerprint.

Cite this