TY - JOUR
T1 - Method validation for (ultra)-trace element concentrations in urine for small sample volumes in large epidemiological studies
T2 - application to the population-based epidemiological multi-ethnic study of atherosclerosis (MESA)
AU - Schilling, Kathrin
AU - Glabonjat, Ronald A.
AU - Balac, Olgica
AU - Gálvez-Fernández, Marta
AU - Domingo-Relloso, Arce
AU - Slavkovich, Vesna
AU - Goldsmith, Jeff
AU - Jones, Miranda R.
AU - Sanchez, Tiffany R.
AU - Navas Acien, Ana
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2023/12/4
Y1 - 2023/12/4
N2 - Analysis of essential and non-essential trace elements in urine has emerged as a valuable tool for assessing occupational and environmental exposures, diagnosing nutritional status and guiding public health and health care intervention. Our study focused on the analysis of trace elements in urine samples from the Multi-Ethnic Study of Atherosclerosis (MESA), a precious resource for health research with limited sample volumes. Here we provide a comprehensive and sensitive method for the analysis of 18 elements using only 100 μL of urine. Method sensitivity, accuracy, and precision were assessed. The analysis by inductively coupled plasma mass spectrometry (ICP-MS) included the measurement of antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), copper (Cu), gadolinium (Gd), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), and zinc (Zn). Further, we reported urinary trace element concentrations by covariates including gender, ethnicity/race, smoking and location. The results showed good accuracy and sensitivity of the ICP-MS method with the limit of detections rangings between 0.001 μg L−1 for U to 6.2 μg L−1 for Zn. Intra-day precision for MESA urine analysis varied between 1.4% for Mo and 26% for Mn (average 6.4% for all elements). The average inter-day precision for most elements was <8.5% except for Gd (20%), U (16%) and Mn (19%) due to very low urinary concentrations. Urinary mean concentrations of non-essential elements followed the order of Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The order of urinary mean concentrations for essential trace elements was Zn > Se > Mo > Cu > Co > Mn. Non-adjusted mean concentration of non-essential trace elements in urine from MESA participants follow the order Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The unadjusted urinary mean concentrations of essential trace elements decrease from Zn > Se > Mo > Cu > Co > Mn.
AB - Analysis of essential and non-essential trace elements in urine has emerged as a valuable tool for assessing occupational and environmental exposures, diagnosing nutritional status and guiding public health and health care intervention. Our study focused on the analysis of trace elements in urine samples from the Multi-Ethnic Study of Atherosclerosis (MESA), a precious resource for health research with limited sample volumes. Here we provide a comprehensive and sensitive method for the analysis of 18 elements using only 100 μL of urine. Method sensitivity, accuracy, and precision were assessed. The analysis by inductively coupled plasma mass spectrometry (ICP-MS) included the measurement of antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), copper (Cu), gadolinium (Gd), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), and zinc (Zn). Further, we reported urinary trace element concentrations by covariates including gender, ethnicity/race, smoking and location. The results showed good accuracy and sensitivity of the ICP-MS method with the limit of detections rangings between 0.001 μg L−1 for U to 6.2 μg L−1 for Zn. Intra-day precision for MESA urine analysis varied between 1.4% for Mo and 26% for Mn (average 6.4% for all elements). The average inter-day precision for most elements was <8.5% except for Gd (20%), U (16%) and Mn (19%) due to very low urinary concentrations. Urinary mean concentrations of non-essential elements followed the order of Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The order of urinary mean concentrations for essential trace elements was Zn > Se > Mo > Cu > Co > Mn. Non-adjusted mean concentration of non-essential trace elements in urine from MESA participants follow the order Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The unadjusted urinary mean concentrations of essential trace elements decrease from Zn > Se > Mo > Cu > Co > Mn.
UR - http://www.scopus.com/inward/record.url?scp=85180083268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85180083268&partnerID=8YFLogxK
U2 - 10.1039/d3ay01605f
DO - 10.1039/d3ay01605f
M3 - Article
C2 - 38099473
AN - SCOPUS:85180083268
SN - 1759-9660
VL - 16
SP - 214
EP - 226
JO - Analytical Methods
JF - Analytical Methods
IS - 2
ER -