Metabolism of Exogenous [2,4-13C]β-Hydroxybutyrate following Traumatic Brain Injury in 21-22-Day-Old Rats: An Ex Vivo NMR Study

Susanna Scafidi, Jennifer Jernberg, Gary Fiskum, Mary C. McKenna

Research output: Contribution to journalArticlepeer-review

Abstract

Traumatic brain injury (TBI) is leading cause of morbidity in young children. Acute dysregulation of oxidative glucose metabolism within the first hours after injury is a hallmark of TBI. The developing brain relies on ketones as well as glucose for energy. Thus, the aim of this study was to determine the metabolism of ketones early after TBI injury in the developing brain. Following the controlled cortical impact injury model of TBI, 21-22-day-old rats were infused with [2,4-13C]β-hydroxybutyrate during the acute (4 h) period after injury. Using ex vivo 13C-NMR spectroscopy, we determined that 13C-β-hydroxybutyrate (13C-BHB) metabolism was increased in both the ipsilateral and contralateral sides of the brain after TBI. Incorporation of the label was significantly higher in glutamate than glutamine, indicating that 13C-BHB metabolism was higher in neurons than astrocytes in both sham and injured brains. Our results show that (i) ketone metabolism was significantly higher in both the ipsilateral and contralateral sides of the injured brain after TBI; (ii) ketones were extensively metabolized by both astrocytes and neurons, albeit higher in neurons; (iii) the pyruvate recycling pathway determined by incorporation of the label from the metabolism of 13C-BHB into lactate was upregulated in the immature brain after TBI.

Original languageEnglish (US)
Article number710
JournalMetabolites
Volume12
Issue number8
DOIs
StatePublished - Aug 2022

Keywords

  • developing brain
  • ketone bodies
  • metabolism
  • traumatic brain injury
  • β-hydroxybutyrate

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Metabolism of Exogenous [2,4-13C]β-Hydroxybutyrate following Traumatic Brain Injury in 21-22-Day-Old Rats: An Ex Vivo NMR Study'. Together they form a unique fingerprint.

Cite this