Mechanistic insights into sympathetic neuronal regeneration: Multitracer molecular imaging of catecholamine handling after cardiac transplantation

Paco E. Bravo, Riikka Lautamäki, Debra Carter, Daniel P. Holt, Stephan G. Nekolla, Robert F. Dannals, Stuart D. Russell, Frank M. Bengel

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


Background - Post-transplant reinnervation is a unique model to study sympathetic neuronal regeneration in vivo. The differential role of subcellular mechanisms of catecholamine handling in nerve terminals has not been investigated. Methods and Results - Three different carbon-11-labeled catecholamines were used for positron emission tomography of transport (C-11 m-hydroxyephedrine, HED), vesicular storage (C-11 epinephrine, EPI), and metabolic degradation (C-11 phenylephrine). A 2-day protocol was used, including quantification of myocardial blood flow by N-13 ammonia. Resting myocardial blood flow and EPI, HED and phenylephrine retention were homogeneous in healthy volunteers (n=7). Washout was only observed for phenylephrine (T1/2 49±6 min). In nonrejecting, otherwise healthy heart transplant recipients (>1 year after surgery, n=10), resting myocardial blood flow was also homogenous. Regional catecholamine uptake of varying degrees was observed in the anterior left ventricular wall and septum. Overall, 24±19% of left ventricle showed HED uptake levels comparable with healthy volunteers, whereas it was only 8±7% for EPI (P=0.004 versus HED). Phenylephrine washout was not different from healthy volunteers in the area with restored EPI and HED retention (T1/2 41±7 min; P>0.05), but was significantly enhanced in the EPI/HED mismatch area (T1/2 36±8 min; P=0.008), consistent with inefficient vesicular storage and enhanced metabolic degradation. Conclusions - Regeneration of subcellular components of sympathetic nerve terminal function does not occur simultaneously. In the reinnervating transplanted heart, a region with normal catecholamine transport and vesicular storage is surrounded by a borderzone, where transport is already restored but vesicular storage remains inefficient, suggesting that vesicular storage is a more delicate mechanism. This observation may have implications for other pathologies involving cardiac autonomic innervation.

Original languageEnglish (US)
JournalCirculation: Cardiovascular Imaging
Issue number8
StatePublished - Aug 1 2015


  • catecholamines
  • heart transplantation
  • positron-emission tomography
  • regeneration
  • sympathetic nervous system

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Mechanistic insights into sympathetic neuronal regeneration: Multitracer molecular imaging of catecholamine handling after cardiac transplantation'. Together they form a unique fingerprint.

Cite this