Measurements of plasma membrane architecture during hypoxia using multiple fluorescent spectroscopic techniques

Xue F. Wang, Scot C. Kuo, John J. Lemasters, Brian Herman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Alterations in plasma membrane structure and function seem to be of primary importance in the pathogenesis of cell injury, calling for more understanding of the changes in plasma membrane lipid structure (e.g., lipid order, lateral diffusion, dependence of phase states, and viscoelasticity) during the evolution of hypoxic injury in hepatocytes using multiple fluorescent spectroscopic techniques. Following hypoxic injury, fluorescence recovery after photobleaching was used to monitor plasma membrane lipid diffusion, resonance energy transfer microscopy was used to detect the lipid topography (domain formation), and the laser trapping technique was used to measure the plasma membrane viscoelasticity. The use of these different kinds of fluorescent spectroscopic techniques coupled with the authors' previous studies using digitized fluorescence polarization microscopy which was used to measure lipid order (fluidity) allowed the delineation of alterations in membrane structure during hypoxic injury and a model of membrane architecture during hypoxic injury, which could not be obtained from the use of any of these techniques alone. A model is proposed in which gel- and fluid-phase lipid islands form during hypoxic cell injury. Formation of these lipid domains promotes cell surface bleb formation, with eventual weakening of plasma membrane integrity, bleb rupture, and cell death. 11

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherPubl by Int Soc for Optical Engineering
Pages301-308
Number of pages8
ISBN (Print)0819407860
StatePublished - Jan 1 1992
Externally publishedYes
EventTime-Resolved Laser Spectroscopy in Biochemistry III - Los Angeles, CA, USA
Duration: Jan 20 1992Jan 22 1992

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume1640
ISSN (Print)0277-786X

Other

OtherTime-Resolved Laser Spectroscopy in Biochemistry III
CityLos Angeles, CA, USA
Period1/20/921/22/92

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Measurements of plasma membrane architecture during hypoxia using multiple fluorescent spectroscopic techniques'. Together they form a unique fingerprint.

Cite this