Measurement of tissue oxygen extraction ratios from venous blood T2: Increased precision and validation of principle

Xavier Golay, M. Johanna Silvennoinen, Jinyuan Zhou, Chekesha S. Clingman, Risto A. Kauppinen, James J. Pekar, Peter C.M. Van Zij

Research output: Contribution to journalArticlepeer-review

97 Scopus citations


It has recently been shown that parenchymal oxygen extraction ratios (OERs) can be quantified using the absolute T2 of venous blood draining from this tissue (Oja et al., J Cereb Blood Flow Metab 1999;19:1289-1295). Here, a modified Carr-Purcell-Meiboom-Gill (CPMG) multiecho experiment was used to increase the efficiency and precision of this approach and to test the applicability of the two-compartment exchange model for spinecho BOLD effects in pure venous blood. Relaxation measurements on bovine blood as a function of CPMG interecho spacing, oxygen saturation, and hematocrit provided the baseline relaxation and susceptibility shift parameters necessary to directly relate OER to T2 of venous blood in vivo. Using an interecho spacing of 25 ms, the results on visual activation studies in eight volunteers showed T2(CPMG) values increasing from 128 ± 9 ms to 174 ± 18 ms upon activation, corresponding to local OER values of 0.38 ± 0.04 and 0.18 ± 0.05 during baseline activity and visual stimulation, respectively. These OER values are in good agreement with literature data on venous oxygenation and numbers determined previously using a single-echo approach, while the measured T2s are about 20-40 ms longer.

Original languageEnglish (US)
Pages (from-to)282-291
Number of pages10
JournalMagnetic resonance in medicine
Issue number2
StatePublished - 2001


  • BOLD contrast
  • OER
  • Quantification
  • T

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Measurement of tissue oxygen extraction ratios from venous blood T2: Increased precision and validation of principle'. Together they form a unique fingerprint.

Cite this