TY - GEN
T1 - Manifold learning techniques in image analysis of high-dimensional diffusion tensor magnetic resonance images
AU - Khurd, Parmeshwar
AU - Baloch, Sajjad
AU - Gur, Ruben
AU - Davatzikos, Christos
AU - Verma, Ragini
PY - 2007
Y1 - 2007
N2 - Diffusion Tensor magnetic resonance imaging (DT-MRI) provides a comprehensive characterization of white matter (WM) in the brain and therefore, plays a crucial role in the investigation of diseases in which WM is suspected to be compromised such as multiple sclerosis and neuropsychiatric disorders like schizophrenia. However changes induced by pathology may be subtle and affected regions of the brain can only be revealed by a group-based analysis of patients in comparison with healthy controls. This in turn requires voxel-based statistical analysis of spatially normalized brain DT images, as in the case of conventional MR images. However this process is rendered extremely challenging in DT-MRI due to the high dimensionality of the data and its inherent non-linearity that causes linear component analysis methods to be inapplicable. We therefore propose a novel framework for the statistical analysis of DT-MRI data using manifold-based techniques such as isomap and kernel PCA that determine the underlying manifold structure of the data, embed it to a manifold and help perform high dimensional statistics on the manifold to determine regions of difference between the groups of patients and controls. The framework has been successfully applied to DT-MRI data from patients with schizophrenia, as well as to study developmental changes in small animals, both of which identify regional changes, indicating the need for manifold-based methods for the statistical analysis of DTI.
AB - Diffusion Tensor magnetic resonance imaging (DT-MRI) provides a comprehensive characterization of white matter (WM) in the brain and therefore, plays a crucial role in the investigation of diseases in which WM is suspected to be compromised such as multiple sclerosis and neuropsychiatric disorders like schizophrenia. However changes induced by pathology may be subtle and affected regions of the brain can only be revealed by a group-based analysis of patients in comparison with healthy controls. This in turn requires voxel-based statistical analysis of spatially normalized brain DT images, as in the case of conventional MR images. However this process is rendered extremely challenging in DT-MRI due to the high dimensionality of the data and its inherent non-linearity that causes linear component analysis methods to be inapplicable. We therefore propose a novel framework for the statistical analysis of DT-MRI data using manifold-based techniques such as isomap and kernel PCA that determine the underlying manifold structure of the data, embed it to a manifold and help perform high dimensional statistics on the manifold to determine regions of difference between the groups of patients and controls. The framework has been successfully applied to DT-MRI data from patients with schizophrenia, as well as to study developmental changes in small animals, both of which identify regional changes, indicating the need for manifold-based methods for the statistical analysis of DTI.
UR - http://www.scopus.com/inward/record.url?scp=34948813006&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34948813006&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2007.383403
DO - 10.1109/CVPR.2007.383403
M3 - Conference contribution
AN - SCOPUS:34948813006
SN - 1424411807
SN - 9781424411801
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
BT - 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
T2 - 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Y2 - 17 June 2007 through 22 June 2007
ER -