TY - JOUR
T1 - Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy
AU - Sastry, Mallika
AU - Xu, Ling
AU - Georgiev, Ivelin S.
AU - Bewley, Carole A.
AU - Nabel, Gary J.
AU - Kwong, Peter D.
PY - 2011/7
Y1 - 2011/7
N2 - NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in 15N, 13C, or 2H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched 15N or 15N/13C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the 15N- and 15N/13C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including 1H-15N and 1H-13C HSQCs, 15N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy.
AB - NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in 15N, 13C, or 2H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched 15N or 15N/13C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the 15N- and 15N/13C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including 1H-15N and 1H-13C HSQCs, 15N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy.
KW - Adenovirus vector
KW - Eukaryotic expression
KW - HIV-1 envelope
KW - Isotope enrichment
KW - N-linked glycosylation
UR - http://www.scopus.com/inward/record.url?scp=80051663513&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051663513&partnerID=8YFLogxK
U2 - 10.1007/s10858-011-9506-4
DO - 10.1007/s10858-011-9506-4
M3 - Article
C2 - 21667299
AN - SCOPUS:80051663513
SN - 0925-2738
VL - 50
SP - 197
EP - 207
JO - Journal of Biomolecular NMR
JF - Journal of Biomolecular NMR
IS - 3
ER -