Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent

Jeff W.M. Bulte, Trevor Douglas, Stephen Mann, Richard B. Frankel, Bruce M. Moskowitz, Rodney A. Brooks, Charles D. Baumgarner, Josef Vymazal, Marie‐Paule ‐P Strub, Joseph A. Frank

Research output: Contribution to journalArticlepeer-review

147 Scopus citations

Abstract

A protein‐encaged superparamagnetic iron oxide has been developed and characterized by using horse spleen apoferritin as a novel bioreactive environment. The roughly spherical magnetoferritin molecules, 120 Å in diameter, are composed of a monocrystalline maghemite or magnetite core 73 Å ± 14 in diameter. Except for the additional presence of iron‐rich molecules of higher molecular weight, the appearance and molecular weight (450 kd) of magnetoferritin are identical to that of natural ferritin; the molecules are externally indistinguishable from their precursor, with a pI (isoelectric point) in the range 4.3–4.6. The measured magnetic moment of the superparamagnetic cores is 13,200 Bohr magnetons per molecule, with T1 and T2 relaxivities (r1 and r2) of 8 and 175 L‐mmol−1 (Fe)‐sec−1, respectively, at body temperature and clinical field strengths. The unusually high r2/r1 ratio of 22 is thought to arise from ideal core composition, with no evidence of crystalline paramagnetic inclusions. T2 relaxation enhancement can be well correlated to the field‐dependent molecular magnetization, as given by the Langevin magnetization function, raised to a power in the range 1.4–1.6. With its nanodimensional biomimetic protein cage as a rigid, convenient matrix for complexing a plethora of bioactive substances, magnetoferritin may provide a novel template for specific targeting of selected cellular sites.

Original languageEnglish (US)
Pages (from-to)497-505
Number of pages9
JournalJournal of Magnetic Resonance Imaging
Volume4
Issue number3
DOIs
StatePublished - 1994
Externally publishedYes

Keywords

  • Contrast media
  • Iron
  • Relaxometry

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent'. Together they form a unique fingerprint.

Cite this