Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit After Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion

Ke Cheng, Konstantinos Malliaras, Tao Sheng Li, Baiming Sun, Christiane Houde, Giselle Galang, Jeremy Smith, Noriko Matsushita, Eduardo Marbán

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

The efficiency of stem cell transplantation is limited by low cell retention. Intracoronary (IC) delivery is convenient and widely used but exhibits particularly low cell retention rates. We sought to improve IC cell retention by magnetic targeting. Rat cardiosphere-derived cells labeled with iron microspheres were injected into the left ventricular cavity of syngeneic rats during brief aortic clamping. Placement of a 1.3 Tesla magnet ~1 cm above the heart during and after cell injection enhanced cell retention at 24 h by 5.2-6.4fold when 1, 3, or 5 × 105 cells were infused, without elevation of serum troponin I (sTnI) levels. Higher cell doses (1 or 2 × 106 cells) did raise sTnI levels, due to microvascular obstruction; in this range, magnetic enhancement did not improve cell retention. To assess efficacy, 5 × 105 iron-labeled, GFP-expressing cells were infused into rat hearts after 45 min ischemia/20 min reperfusion of the left anterior coronary artery, with and without a superimposed magnet. By quantitative PCR and optical imaging, magnetic targeting increased cardiac retention of transplanted cells at 24 h, and decreased migration into the lungs. The enhanced cell engraftment persisted for at least 3 weeks, at which time left ventricular remodeling was attenuated, and therapeutic benefit (ejection fraction) was higher, in the magnetic targeting group. Histology revealed more GFP+ cardiomyocytes, Ki67+ cardiomyocytes and GFP-/ckit+ cells, and fewer TUNEL+ cells, in hearts from the magnetic targeting group. In a rat model of ischemia/reperfusion injury, magnetically enhanced intracoronary cell delivery is safe and improves cell therapy outcomes.

Original languageEnglish (US)
Pages (from-to)1121-1135
Number of pages15
JournalCell Transplantation
Volume21
Issue number6
DOIs
StatePublished - 2012
Externally publishedYes

Keywords

  • Cardiac stem cells
  • Myocardial infarction
  • Targeted cell delivery

ASJC Scopus subject areas

  • Cell Biology
  • Transplantation
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit After Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion'. Together they form a unique fingerprint.

Cite this