TY - JOUR
T1 - Low-Dose Radiation Risks of Lymphohematopoietic Cancer Mortality in U.S. Shipyard Workers
AU - Tao, Xuguang
AU - Curriero, Frank C.
AU - Mahesh, Mahadevappa
N1 - Publisher Copyright:
© 2024 by Radiation Research Society.
PY - 2024/12/15
Y1 - 2024/12/15
N2 - The linear, non-threshold (LNT) hypothesis of cancer induction derived from studies of populations exposed to moderate-to-high acute radiation doses may not be indicative of cancer risks associated with lifetime radiation exposures less than 100 mSv. The objective of this study was to examine risks and dose-response patterns of lymphohematopoietic cancer (LHC) and its types associated with low radiation exposure while adjusting for possible confounding factors. A retrospective cohort of 437,937 U.S. nuclear shipyard workers (153,930 radiation and 284,007 non-radiation workers) was followed from 1957 to 2011, with 3,699 LHC deaths observed. The risk of LHC in radiation workers was initially compared to the risk in non-radiation workers. Time dependent accumulated radiation dose, lagged 2 years, was used in categorical and continuous dose analysis among radiation workers to examine the LHC risks and possible dose-response relationships based on Poisson regression models. These analyses controlled for sex, race, time dependent age, calendar time, socioeconomic status, solvent-related last job, and age at first hire. The median lifetime radiation dose for the radiation worker population was 0.82 mSv and the 95th percentile dose was 83.63 mSv. The study shows: 1. LHC mortality for radiation workers was significantly lower than non-radiation workers relative risk: 0.927; 95% confidence intervals (95% CI): 0.865, 0.992; P = 0.030]. Among LHC types, the risks for lymphoid leukemia and lymphomas in radiation workers were lower than the risk in non-radiation workers with statistical significance, while the risk for the rest of LHC types did not show any statistically significant difference. 2. In categorical dose analysis among radiation workers, sample size weighted linear trend of relative risk (RRs) for LHC and its types in five dose categories (>0-<25, 25-<50, 50-<100, 100-<200, and > = 200 mSv) vs. 0 mSv were not statistically significant, although there was an elevation of RR for chronic myeloid leukemia only in the 50-<100 mSv category (RR: 2.746; 95% CI: 1.002, 7.521; P = 0.049) vs. 0 mSv. 3. The Poisson regression analyses among radiation workers using the time dependent radiation dose as a continuous variable showed an excess relative risk (ERR) for LHC at 100 mSv of 0.094 (95% CI: -0.037, 0.225; P = 0.158) and leukemia less chronic lymphoid leukemia, of 0.178 (95% CI: -0.085, 0.440; P = 0.440) vs. 0 mSv. The ERRs and their linear trend for all other types were not statistically significant.
AB - The linear, non-threshold (LNT) hypothesis of cancer induction derived from studies of populations exposed to moderate-to-high acute radiation doses may not be indicative of cancer risks associated with lifetime radiation exposures less than 100 mSv. The objective of this study was to examine risks and dose-response patterns of lymphohematopoietic cancer (LHC) and its types associated with low radiation exposure while adjusting for possible confounding factors. A retrospective cohort of 437,937 U.S. nuclear shipyard workers (153,930 radiation and 284,007 non-radiation workers) was followed from 1957 to 2011, with 3,699 LHC deaths observed. The risk of LHC in radiation workers was initially compared to the risk in non-radiation workers. Time dependent accumulated radiation dose, lagged 2 years, was used in categorical and continuous dose analysis among radiation workers to examine the LHC risks and possible dose-response relationships based on Poisson regression models. These analyses controlled for sex, race, time dependent age, calendar time, socioeconomic status, solvent-related last job, and age at first hire. The median lifetime radiation dose for the radiation worker population was 0.82 mSv and the 95th percentile dose was 83.63 mSv. The study shows: 1. LHC mortality for radiation workers was significantly lower than non-radiation workers relative risk: 0.927; 95% confidence intervals (95% CI): 0.865, 0.992; P = 0.030]. Among LHC types, the risks for lymphoid leukemia and lymphomas in radiation workers were lower than the risk in non-radiation workers with statistical significance, while the risk for the rest of LHC types did not show any statistically significant difference. 2. In categorical dose analysis among radiation workers, sample size weighted linear trend of relative risk (RRs) for LHC and its types in five dose categories (>0-<25, 25-<50, 50-<100, 100-<200, and > = 200 mSv) vs. 0 mSv were not statistically significant, although there was an elevation of RR for chronic myeloid leukemia only in the 50-<100 mSv category (RR: 2.746; 95% CI: 1.002, 7.521; P = 0.049) vs. 0 mSv. 3. The Poisson regression analyses among radiation workers using the time dependent radiation dose as a continuous variable showed an excess relative risk (ERR) for LHC at 100 mSv of 0.094 (95% CI: -0.037, 0.225; P = 0.158) and leukemia less chronic lymphoid leukemia, of 0.178 (95% CI: -0.085, 0.440; P = 0.440) vs. 0 mSv. The ERRs and their linear trend for all other types were not statistically significant.
UR - http://www.scopus.com/inward/record.url?scp=85195075575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195075575&partnerID=8YFLogxK
U2 - 10.1667/RADE-22-00092.1
DO - 10.1667/RADE-22-00092.1
M3 - Article
C2 - 36520982
AN - SCOPUS:85195075575
SN - 0033-7587
VL - 201
SP - 586
EP - 603
JO - Radiation research
JF - Radiation research
IS - 6
ER -