TY - JOUR
T1 - Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema
AU - Stanley, Susan E.
AU - Gable, Dustin L.
AU - Wagner, Christa L.
AU - Carlile, Thomas M.
AU - Hanumanthu, Vidya Sagar
AU - Podlevsky, Joshua D.
AU - Khalil, Sara E.
AU - De Zern, Amy E.
AU - Rojas-Duran, Maria F.
AU - Applegate, Carolyn D.
AU - Alder, Jonathan
AU - Parry, Erin M.
AU - Gilbert, Wendy V.
AU - Armanios, Mary
N1 - Publisher Copyright:
Copyright © 2016, American Association for the Advancement of Science.
PY - 2016/8/10
Y1 - 2016/8/10
N2 - Chronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients. The mutations segregated with short telomere length, low telomerase RNA levels, and extrapulmonary manifestations including myelodysplastic syndrome and liver disease. A truncated NAF1 was detected in cells derived from patients, and, in cells in which the frameshift mutation was introduced by genome editing, telomerase RNA levels were reduced. The mutant NAF1 lacked a conserved carboxyl-terminal motif, which we show is required for nuclear localization. To understand the disease mechanism, we used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) to generate Naf1+/- mice and found that they had half the levels of telomerase RNA. Other box H/ACA RNA levels were also decreased, but rRNA pseudouridylation, which is guided by snoRNAs, was intact. Moreover, first-generation Naf1+/- mice showed no evidence of ribosomal pathology. Our data indicate that disease in NAF1 mutation carriers is telomere-mediated; they show that NAF1 haploinsufficiency selectively disturbs telomere length homeostasis by decreasing the levels of telo-merase RNA while sparing rRNA pseudouridylation.
AB - Chronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients. The mutations segregated with short telomere length, low telomerase RNA levels, and extrapulmonary manifestations including myelodysplastic syndrome and liver disease. A truncated NAF1 was detected in cells derived from patients, and, in cells in which the frameshift mutation was introduced by genome editing, telomerase RNA levels were reduced. The mutant NAF1 lacked a conserved carboxyl-terminal motif, which we show is required for nuclear localization. To understand the disease mechanism, we used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) to generate Naf1+/- mice and found that they had half the levels of telomerase RNA. Other box H/ACA RNA levels were also decreased, but rRNA pseudouridylation, which is guided by snoRNAs, was intact. Moreover, first-generation Naf1+/- mice showed no evidence of ribosomal pathology. Our data indicate that disease in NAF1 mutation carriers is telomere-mediated; they show that NAF1 haploinsufficiency selectively disturbs telomere length homeostasis by decreasing the levels of telo-merase RNA while sparing rRNA pseudouridylation.
UR - http://www.scopus.com/inward/record.url?scp=84983427611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84983427611&partnerID=8YFLogxK
U2 - 10.1126/scitranslmed.aaf7837
DO - 10.1126/scitranslmed.aaf7837
M3 - Article
C2 - 27510903
AN - SCOPUS:84983427611
SN - 1946-6234
VL - 8
JO - Science translational medicine
JF - Science translational medicine
IS - 351
M1 - 351ra107
ER -