Longitudinal data analysis for discrete and continuous outcomes.

S. L. Zeger, K. Y. Liang

Research output: Contribution to journalArticlepeer-review

5943 Scopus citations

Abstract

Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One objective of statistical analysis is to describe the marginal expectation of the outcome variable as a function of the covariates while accounting for the correlation among the repeated observations for a given subject. This paper proposes a unifying approach to such analysis for a variety of discrete and continuous outcomes. A class of generalized estimating equations (GEEs) for the regression parameters is proposed. The equations are extensions of those used in quasi-likelihood (Wedderburn, 1974, Biometrika 61, 439-447) methods. The GEEs have solutions which are consistent and asymptotically Gaussian even when the time dependence is misspecified as we often expect. A consistent variance estimate is presented. We illustrate the use of the GEE approach with longitudinal data from a study of the effect of mothers' stress on children's morbidity.

Original languageEnglish (US)
Pages (from-to)121-130
Number of pages10
JournalBiometrics
Volume42
Issue number1
DOIs
StatePublished - Mar 1986
Externally publishedYes

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Longitudinal data analysis for discrete and continuous outcomes.'. Together they form a unique fingerprint.

Cite this