Local adaptation and archaic introgression shape global diversity at human structural variant loci

Stephanie M. Yan, Rachel M. Sherman, Dylan J. Taylor, Divya R. Nair, Andrew N. Bortvin, Michael C. Schatz, Rajiv C. McCoy

Research output: Contribution to journalArticlepeer-review

Abstract

Large genomic insertions and deletions are a potent source of functional variation, but are challenging to resolve with short-read sequencing, limiting knowledge of the role of such structural variants (SVs) in human evolution. Here, we used a graph-based method to genotype long-read-discovered SVs in short-read data from diverse human genomes. We then applied an admixture-aware method to identify 220 SVs exhibiting extreme patterns of frequency differentiation—a signature of local adaptation. The top two variants traced to the immunoglobulin heavy chain locus, tagging a haplotype that swept to near fixation in certain Southeast Asian populations, but is rare in other global populations. Further investigation revealed evidence that the haplotype traces to gene flow from Neanderthals, corroborating the role of immune-related genes as prominent targets of adaptive introgression. Our study demonstrates how recent technical advances can help resolve signatures of key evolutionary events that remained obscured within technically challenging regions of the genome.

Original languageEnglish (US)
Article numbere67615
JournaleLife
Volume10
DOIs
StatePublished - Sep 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Local adaptation and archaic introgression shape global diversity at human structural variant loci'. Together they form a unique fingerprint.

Cite this