Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling

Maricel Gomez-Soler, Marina P. Gehring, Bernhard C. Lechtenberg, Elmer Zapata-Mercado, Alyssa Ruelos, Mike W. Matsumoto, Kalina Hristova, Elena B. Pasquale

Research output: Contribution to journalArticlepeer-review

Abstract

The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated.

Original languageEnglish (US)
Article number103870
JournaliScience
Volume25
Issue number3
DOIs
StatePublished - Mar 18 2022
Externally publishedYes

Keywords

  • Biochemistry
  • Molecular biology
  • Molecular interaction

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling'. Together they form a unique fingerprint.

Cite this