Lesion location alters brain activation in chronically impaired stroke survivors

Andreas R. Luft, Sandy Waller, Larry Forrester, Gerald V. Smith, Jill Whitall, Richard F. Macko, Jörg B. Schulz, Daniel F. Hanley

Research output: Contribution to journalArticlepeer-review

116 Scopus citations


Recovery of motor function after stroke is associated with reorganization in central motor networks. Functional imaging has demonstrated recovery-dependent alterations in brain activation patterns when compared to healthy controls. These alterations are variable across stroke subjects. Factors identified as contributing to this variability are the degree of functional impairment, the time interval since stroke, and rehabilitative therapies. Here, the hypothesis is tested that lesion location influences the activation patterns. Using functional magnetic resonance imaging, the objective was to characterize similarities or differences in movement-related activation patterns in patients chronically disabled by cortical plus subcortical or subcortical lesions only. Brain activation was mapped during paretic and non-paretic movement in 11 patients with subcortical stroke, in nine patients with stroke involving sensorimotor cortex, and in eight healthy volunteers. Patient groups had similar average motor deficit as measured by a battery of scores and strength measures. Substantial differences between patients groups were found in activation patterns associated with paretic limb movement: Whereas contralateral motor cortex, ipsilateral cerebellum (relative to moving limb), bilateral mesial (cingulate, SMA), and perisylvian regions were active in subcortical stroke, cortical patients recruited only ipsilateral postcentral mesial hemisphere regions, and areas at the rim of the stroke cavity. For both groups, activation in ipsilateral postcentral cortex correlated with motor function; in subcortical stroke, the same was found for mesial and perisylvian regions. Overall, brain activation in cortical stroke was less, while in subcortical patients, more than in healthy controls. For non-paretic movement, activation patterns were similar to control in cortical patients. In subcortical patients, however, activation patterns differed: the activation of non-paretic movement was similar to that of paretic movement (corrected for side). The data demonstrate more differences than similarities in the central control of paretic and non-paretic limb movement in patients chronically disabled by subcortical versus cortical stroke. Whereas standard motor circuitry is utilized in subcortical stroke, alternative networks are recruited after cortical stroke. This finding proposes lesion-specific mechanisms of reorganization. Optimal activation of these distinct networks may require different rehabilitative strategies.

Original languageEnglish (US)
Pages (from-to)924-935
Number of pages12
Issue number3
StatePublished - Mar 2004


  • Cerebellum
  • Chronic
  • Functional imaging
  • Hemiparesis
  • Sensorimotor cortex
  • Stroke

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Lesion location alters brain activation in chronically impaired stroke survivors'. Together they form a unique fingerprint.

Cite this