TY - JOUR
T1 - Left ventricular synchrony, torsion, and recoil mechanics in Ebstein's anomaly
T2 - Insights from cardiovascular magnetic resonance
AU - Steinmetz, Michael
AU - Usenbenz, Simon
AU - Kowallick, Johannes Tammo
AU - Hösch, Olga
AU - Staab, Wieland
AU - Lange, Torben
AU - Kutty, Shelby
AU - Lotz, Joachim
AU - Hasenfuß, Gerd
AU - Paul, Thomas
AU - Schuster, Andreas
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/14
Y1 - 2017/12/14
N2 - Background: Disease progression and heart failure development in Ebstein's Anomaly (EA) of the tricuspid valve is characterized by both right and left ventricular (LV) deterioration. The mechanisms underlying LV dysfunction and their role in heart failure development are incompletely understood. We hypothesized that LV dyssynchrony and impaired torsion and recoil mechanics induced by paradoxical movement of the basal septum may play a role in heart failure development. Methods: 31 EA patients and 31 matched controls underwent prospective cardiovascular magnetic resonance (CMR). CMR feature tracking (CMR-FT) was performed on apical, midventricular and basal short-Axis and 4D-volume analysis was performed using three long-Axis views and a short axis cine stack employing dedicated software. Circumferential uniformity ratio estimates (CURE) time-To-peak-based circumferential systolic dyssynchrony index (C-SDI), 4D volume analysis derived SDI (4D-SDI), torsion (Tor) and systolic (sysTR) and diastolic torsion rate (diasTR) were calculated for the LV. QRS duration, brain natriuretic peptide, NYHA and Total R/L-Volume Index (R/L Index) were obtained. Results: EA patients (31.5 years; controls 31.4 years) had significantly longer QRS duration (123.35 ms ± 26.36 vs. 97.33 ms ± 11.89 p < 0.01) and showed more LV dyssynchrony (4D-SDI 7.60% ± 4.58 vs. 2.54% ± 0.62, p < 0.001; CURE 0.77 ± 0.05 vs. 0.86 ± 0.03, p < 0.001; C-SDI 7.70 ± 3.38 vs. 3.80 ± 0.91, p = 0.001). There were significant associations of LV dyssynchrony with heart failure parameters and QRS duration. Although torsion and recoil mechanics did not differ significantly (p > 0.05) there was an association of torsion and recoil mechanics with dyssynchrony parameters CURE (sysTR r =-0.426; p = 0.017, diasTR r = 0.419; p = 0.019), 4D-SDI (sysTR r = 0.383; p = 0.044) and C-SDI (diasTR r =-0.364; p = 0.044). Conclusions: EA is characterized by LV intra-ventricular dyssynchrony, which is associated with heart failure and disease severity parameters. Markers of dyssynchrony can easily be quantified from CMR-FT, and may have a role in the assessment of altered cardiac function, carrying potential management implications for EA patients.
AB - Background: Disease progression and heart failure development in Ebstein's Anomaly (EA) of the tricuspid valve is characterized by both right and left ventricular (LV) deterioration. The mechanisms underlying LV dysfunction and their role in heart failure development are incompletely understood. We hypothesized that LV dyssynchrony and impaired torsion and recoil mechanics induced by paradoxical movement of the basal septum may play a role in heart failure development. Methods: 31 EA patients and 31 matched controls underwent prospective cardiovascular magnetic resonance (CMR). CMR feature tracking (CMR-FT) was performed on apical, midventricular and basal short-Axis and 4D-volume analysis was performed using three long-Axis views and a short axis cine stack employing dedicated software. Circumferential uniformity ratio estimates (CURE) time-To-peak-based circumferential systolic dyssynchrony index (C-SDI), 4D volume analysis derived SDI (4D-SDI), torsion (Tor) and systolic (sysTR) and diastolic torsion rate (diasTR) were calculated for the LV. QRS duration, brain natriuretic peptide, NYHA and Total R/L-Volume Index (R/L Index) were obtained. Results: EA patients (31.5 years; controls 31.4 years) had significantly longer QRS duration (123.35 ms ± 26.36 vs. 97.33 ms ± 11.89 p < 0.01) and showed more LV dyssynchrony (4D-SDI 7.60% ± 4.58 vs. 2.54% ± 0.62, p < 0.001; CURE 0.77 ± 0.05 vs. 0.86 ± 0.03, p < 0.001; C-SDI 7.70 ± 3.38 vs. 3.80 ± 0.91, p = 0.001). There were significant associations of LV dyssynchrony with heart failure parameters and QRS duration. Although torsion and recoil mechanics did not differ significantly (p > 0.05) there was an association of torsion and recoil mechanics with dyssynchrony parameters CURE (sysTR r =-0.426; p = 0.017, diasTR r = 0.419; p = 0.019), 4D-SDI (sysTR r = 0.383; p = 0.044) and C-SDI (diasTR r =-0.364; p = 0.044). Conclusions: EA is characterized by LV intra-ventricular dyssynchrony, which is associated with heart failure and disease severity parameters. Markers of dyssynchrony can easily be quantified from CMR-FT, and may have a role in the assessment of altered cardiac function, carrying potential management implications for EA patients.
KW - CMR feature tracking
KW - Congenital heart disease
KW - Dyssynchrony
KW - Ebstein anomaly
KW - Heart failure
KW - Left ventricle
KW - Torsion and recoil
UR - http://www.scopus.com/inward/record.url?scp=85037984347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037984347&partnerID=8YFLogxK
U2 - 10.1186/s12968-017-0414-y
DO - 10.1186/s12968-017-0414-y
M3 - Article
C2 - 29237468
AN - SCOPUS:85037984347
SN - 1097-6647
VL - 19
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 1
M1 - 101
ER -