Learning Spatially-correlated Temporal Dictionaries for Calcium Imaging

Gal Mishne, Adam S. Charles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Calcium imaging has become a fundamental neural imaging technique, aiming to recover the individual activity of hundreds of neurons in a cortical region. Current methods (mostly matrix factorization) are aimed at detecting neurons in the field-of-view and then inferring the corresponding time-traces. In this paper, we reverse the modeling and instead aim to minimize the spatial inference, while focusing on finding the set of temporal traces present in the data. We reframe the problem in a dictionary learning setting, where the dictionary contains the time-traces and the sparse coefficient are spatial maps. We adapt dictionary learning to calcium imaging by introducing constraints on the norms and correlations of the time-traces, and incorporating a hierarchical spatial filtering model that correlates the time-trace usage over the field-of-view. We demonstrate on synthetic and real data that our solution has advantages regarding initialization, implicitly inferring number of neurons and simultaneously detecting different neuronal types.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1065-1069
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Externally publishedYes
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Keywords

  • Calcium imaging
  • Dictionary learning
  • Re-weighted l
  • Sparse coding
  • Two-photon microscopy

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Learning Spatially-correlated Temporal Dictionaries for Calcium Imaging'. Together they form a unique fingerprint.

Cite this