Kinetic Study of the Antiport Mechanism of an Escherichia coli Zinc Transporter, ZitB

Yang Chao, Dax Fu

Research output: Contribution to journalArticlepeer-review

115 Scopus citations


ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal-sensitive fluorescent indicator encapsulated in proteoliposomes. Metal ion filling experiments showed that the initial rate of Zn2+ influx was a linear function of the molar ratio of ZitB to lipid and was related to the concentration of Zn2+ or Cd2+ by a hyperbola with a Michaelis-Menten constant (Km) of 104.9 ± 5.4 μM and 90.1 ± 3.7 μM, respectively. Depletion of proton stalled Cd2+ transport down its diffusion gradient, whereas tetraethylammonium ion substitution for K+ did not affect Cd2+ transport, indicating that Cd2+ transport is coupled to H+ rather than to K+. H+ transport was inferred by the H + dependence of Cd2+ transport, showing a hyperbolic relationship with a Km of 19.9 nM for H+. Applying H+ diffusion gradients across the membrane caused Cd2+ fluxes both into and out of proteoliposomes against the imposed H+ gradients. Likewise, applying outwardly oriented membrane electrical potential resulted in Cd2+ efflux, demonstrating the electrogenic effect of ZitB transport. Taken together, these results indicate that ZitB is an antiporter catalyzing the obligatory exchange of Zn2+ or Cd2+ for H +. The exchange stoichiometry of metal ion for proton is likely to be 1:1.

Original languageEnglish (US)
Pages (from-to)12043-12050
Number of pages8
JournalJournal of Biological Chemistry
Issue number13
StatePublished - Mar 26 2004
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Kinetic Study of the Antiport Mechanism of an Escherichia coli Zinc Transporter, ZitB'. Together they form a unique fingerprint.

Cite this