Isometric Feature Embedding for Content-Based Image Retrieval

Hayato Muraki, Kei Nishimaki, Shuya Tobari, Kenichi Oishi, Hitoshi Iyatomi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Content-based image retrieval (CBIR) technology for brain MRI is needed for diagnostic support and research. To realize practical CBIR, it is necessary to obtain a low-dimensional representation that simultaneously achieves (i) data integrity, (ii) high disease retrieval capability, and (iii) interpretability. However, conventional methods based on machine learning techniques such as variational autoencoders (VAE) cannot acquire representations that satisfy these requirements; hence, an ad-hoc classification model must be prepared for disease retrieval. In this paper, we propose isometric feature embedding for CBIR (IECBIR), a low-dimensional representation acquisition framework that simultaneously satisfies the above requirements. In the evaluation experiment using the ADNI2 dataset of t1-weighted 3D brain MRIs from 573 subjects (3,557 cases in total), the low-dimensional representation acquired by IE-CBIR (1/4,096 of the number of elements compared with the original) achieved a classification performance of 0.888 in F1 score and 91.5% in accuracy for Alzheimer's disease and normal cognitive subjects, without the need for ad hoc models, while achieving a high preservation of the original data. This diagnostic performance outperformed machine learning methods such as CNNs (76-91% accuracy), which specialize in classification without considering the acquisition of low-dimensional representations and their interpretability.

Original languageEnglish (US)
Title of host publication2024 58th Annual Conference on Information Sciences and Systems, CISS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350369298
DOIs
StatePublished - 2024
Event58th Annual Conference on Information Sciences and Systems, CISS 2024 - Princeton, United States
Duration: Mar 13 2024Mar 15 2024

Publication series

Name2024 58th Annual Conference on Information Sciences and Systems, CISS 2024

Conference

Conference58th Annual Conference on Information Sciences and Systems, CISS 2024
Country/TerritoryUnited States
CityPrinceton
Period3/13/243/15/24

Keywords

  • 3D brain MRI
  • ADNI
  • CBIR
  • dimensional reduction

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality
  • Control and Optimization
  • Modeling and Simulation
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Isometric Feature Embedding for Content-Based Image Retrieval'. Together they form a unique fingerprint.

Cite this