TY - JOUR
T1 - Isolation and purification of proteoglycans.
AU - Fedarko, N. S.
PY - 1994
Y1 - 1994
N2 - Purification of a protein typically involves development of a quantitative assay to track protein integrity (e.g. enzyme activity) during subsequent isolation steps. The generalized procedure involves choosing the source of the protein, defining extraction conditions, developing bulk purification methods followed by refined, more selective methods. The purification of proteoglycans is often complicated by a) limited source quantities, b) necessity of chaotrophic solvents for efficient extraction, c) their large molecular size and d) lack of defined functions to enable purity (i.e. activity, conformation) to be assessed. Because the usual goal of proteoglycan purification is physical characterization (intact molecular weight, core protein and glycosaminoglycan class and size), the problems of a suitable assay and/or native conformation are avoided. The 'assay' for tracking proteoglycan isolation typically utilizes uronic acid content or radiolabel incorporation as a marker. Once extracted from their cellular/extracellular environment, proteoglycans can be isolated by density gradient centrifugation and/or column chromatography techniques. Recent advances in the composition of chromatographic supports have enabled the application of ion-exchange, gel permeation, hydrophobic interaction and affinity chromatography resins using efficient high-pressure liquid chromatography to proteoglycan purification.
AB - Purification of a protein typically involves development of a quantitative assay to track protein integrity (e.g. enzyme activity) during subsequent isolation steps. The generalized procedure involves choosing the source of the protein, defining extraction conditions, developing bulk purification methods followed by refined, more selective methods. The purification of proteoglycans is often complicated by a) limited source quantities, b) necessity of chaotrophic solvents for efficient extraction, c) their large molecular size and d) lack of defined functions to enable purity (i.e. activity, conformation) to be assessed. Because the usual goal of proteoglycan purification is physical characterization (intact molecular weight, core protein and glycosaminoglycan class and size), the problems of a suitable assay and/or native conformation are avoided. The 'assay' for tracking proteoglycan isolation typically utilizes uronic acid content or radiolabel incorporation as a marker. Once extracted from their cellular/extracellular environment, proteoglycans can be isolated by density gradient centrifugation and/or column chromatography techniques. Recent advances in the composition of chromatographic supports have enabled the application of ion-exchange, gel permeation, hydrophobic interaction and affinity chromatography resins using efficient high-pressure liquid chromatography to proteoglycan purification.
UR - http://www.scopus.com/inward/record.url?scp=0028018527&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028018527&partnerID=8YFLogxK
U2 - 10.1007/978-3-0348-7545-5_3
DO - 10.1007/978-3-0348-7545-5_3
M3 - Review article
C2 - 8298254
AN - SCOPUS:0028018527
SN - 1023-294X
VL - 70
SP - 9
EP - 35
JO - EXS
JF - EXS
ER -