Is Registering Raw Tagged-MR Enough for Strain Estimation in the Era of Deep Learning?

Zhangxing Bian, Ahmed Alshareef, Shuwen Wei, Junyu Chen, Yuli Wang, Jonghye Woo, Dzung Pham, Jiachen Zhuo, Aaron Carass, Jerry L. Prince

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Magnetic Resonance Imaging with tagging (tMRI) has long been utilized for quantifying tissue motion and strain during deformation. However, a phenomenon known as tag fading, a gradual decrease in tag visibility over time, often complicates post-processing. The first contribution of this study is to model tag fading by considering the interplay between T1 relaxation and the repeated application of radio frequency (RF) pulses during serial imaging sequences. This is a factor that has been overlooked in prior research on tMRI post-processing. Further, we have observed an emerging trend of utilizing raw tagged MRI within a deep learning-based (DL) registration framework for motion estimation. In this work, we evaluate and analyze the impact of commonly used image similarity objectives in training DL registrations on raw tMRI. This is then compared with the Harmonic Phase-based approach, a traditional approach which is claimed to be robust to tag fading. Our findings, derived from both simulated images and an actual phantom scan, reveal the limitations of various similarity losses in raw tMRI and emphasize caution in registration tasks where image intensity changes over time.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2024
Subtitle of host publicationImage Processing
EditorsOlivier Colliot, Jhimli Mitra
PublisherSPIE
ISBN (Electronic)9781510671560
DOIs
StatePublished - 2024
EventMedical Imaging 2024: Image Processing - San Diego, United States
Duration: Feb 19 2024Feb 22 2024

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12926
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2024: Image Processing
Country/TerritoryUnited States
CitySan Diego
Period2/19/242/22/24

Keywords

  • deep learning registration
  • image similarity
  • MR tagging
  • strain estimation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Is Registering Raw Tagged-MR Enough for Strain Estimation in the Era of Deep Learning?'. Together they form a unique fingerprint.

Cite this