@inproceedings{5a23e7efcbb448d9900c0c01194b52c5,
title = "Is Registering Raw Tagged-MR Enough for Strain Estimation in the Era of Deep Learning?",
abstract = "Magnetic Resonance Imaging with tagging (tMRI) has long been utilized for quantifying tissue motion and strain during deformation. However, a phenomenon known as tag fading, a gradual decrease in tag visibility over time, often complicates post-processing. The first contribution of this study is to model tag fading by considering the interplay between T1 relaxation and the repeated application of radio frequency (RF) pulses during serial imaging sequences. This is a factor that has been overlooked in prior research on tMRI post-processing. Further, we have observed an emerging trend of utilizing raw tagged MRI within a deep learning-based (DL) registration framework for motion estimation. In this work, we evaluate and analyze the impact of commonly used image similarity objectives in training DL registrations on raw tMRI. This is then compared with the Harmonic Phase-based approach, a traditional approach which is claimed to be robust to tag fading. Our findings, derived from both simulated images and an actual phantom scan, reveal the limitations of various similarity losses in raw tMRI and emphasize caution in registration tasks where image intensity changes over time.",
keywords = "deep learning registration, image similarity, MR tagging, strain estimation",
author = "Zhangxing Bian and Ahmed Alshareef and Shuwen Wei and Junyu Chen and Yuli Wang and Jonghye Woo and Dzung Pham and Jiachen Zhuo and Aaron Carass and Prince, {Jerry L.}",
note = "Publisher Copyright: {\textcopyright} 2024 SPIE.; Medical Imaging 2024: Image Processing ; Conference date: 19-02-2024 Through 22-02-2024",
year = "2024",
doi = "10.1117/12.3006906",
language = "English (US)",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Olivier Colliot and Jhimli Mitra",
booktitle = "Medical Imaging 2024",
}