TY - JOUR
T1 - Intracellular free magnesium and phosphorylated metabolites in hexokinase- and pyruvate kinase-deficient red cells measured using 31P-NMR spectroscopy
AU - Ouwerkerk, Ronald
AU - van Echteld, Cees J A
AU - Staal, Gerard E J
AU - Rijksen, Gert
PY - 1989/3/6
Y1 - 1989/3/6
N2 - The erythrocyte metabolism of two patients with nonspherocytic hemolytic anemia caused by a hexokinase deficiency, and a pyruvate kinase deficiency, respectively, were studied with NMR. The complexing of ATP and 2,3-diphosphoglycerate (2,3-DPG) with Mg2+ and hemoglobin (Hb) was determined using 31P-NMR on oxygenated and deoxygenated cells to investigate the influences of these enzyme defects on intracellular magnesium distribution and on Hb oxygen dissociation. In the pyruvate kinase-deficient red blood cells, the 2,3-DPG concentration was almost twice the normal value and the ATP concentration was near the lower limit of the normal range. In the hexokinase-deficient red cell population, the predominance of young cells masked the deficiency. Therefore, reticulocyte control cells were included in this study. In the oxygenated pyruvate kinase-deficient cells, the fraction of ATP that is complexed to magnesium as well as the free Mg2+ concentration were normal, despite the abnormal concentration of 2,3-DPG. In the deoxygenated cells, the free Mg2+ concentration was lower than in normal cells. The fraction of Hb complexed with 2,3-DPG was higher than normal in both oxygenated and deoxygenated pyruvate kinase-deficient cells, in accordance with the high p50 of the oxygen-hemoglobin dissociation curve. In hexokinase-deficient cells, two major abnormalities are found: when the cells were deoxygenated, the concentration of ATP and 2,3-DPG fell. This was not observed for any other sample and could, therefore, be a consequence of the hexokinase deficiency. Despite almost normal levels of magnesium-binding metabolites, the free Mg2+ concentration in oxygenated and deoxygenated cells is much lower than in normal cells. This could be a cell-age-related phenomenon, since lower free Mg2+ concentrations were also found in reticulocyte control cells.
AB - The erythrocyte metabolism of two patients with nonspherocytic hemolytic anemia caused by a hexokinase deficiency, and a pyruvate kinase deficiency, respectively, were studied with NMR. The complexing of ATP and 2,3-diphosphoglycerate (2,3-DPG) with Mg2+ and hemoglobin (Hb) was determined using 31P-NMR on oxygenated and deoxygenated cells to investigate the influences of these enzyme defects on intracellular magnesium distribution and on Hb oxygen dissociation. In the pyruvate kinase-deficient red blood cells, the 2,3-DPG concentration was almost twice the normal value and the ATP concentration was near the lower limit of the normal range. In the hexokinase-deficient red cell population, the predominance of young cells masked the deficiency. Therefore, reticulocyte control cells were included in this study. In the oxygenated pyruvate kinase-deficient cells, the fraction of ATP that is complexed to magnesium as well as the free Mg2+ concentration were normal, despite the abnormal concentration of 2,3-DPG. In the deoxygenated cells, the free Mg2+ concentration was lower than in normal cells. The fraction of Hb complexed with 2,3-DPG was higher than normal in both oxygenated and deoxygenated pyruvate kinase-deficient cells, in accordance with the high p50 of the oxygen-hemoglobin dissociation curve. In hexokinase-deficient cells, two major abnormalities are found: when the cells were deoxygenated, the concentration of ATP and 2,3-DPG fell. This was not observed for any other sample and could, therefore, be a consequence of the hexokinase deficiency. Despite almost normal levels of magnesium-binding metabolites, the free Mg2+ concentration in oxygenated and deoxygenated cells is much lower than in normal cells. This could be a cell-age-related phenomenon, since lower free Mg2+ concentrations were also found in reticulocyte control cells.
KW - (Human red blood cell)
KW - P-
KW - Hexokinase deficiency
KW - intracellular
KW - Magnesium ion
KW - NMR
KW - Pyruvate kinase deficiency
UR - http://www.scopus.com/inward/record.url?scp=0024595896&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024595896&partnerID=8YFLogxK
U2 - 10.1016/0167-4889(89)90052-9
DO - 10.1016/0167-4889(89)90052-9
M3 - Article
C2 - 2920177
AN - SCOPUS:0024595896
SN - 0167-4889
VL - 1010
SP - 294
EP - 303
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 3
ER -