Abstract
Intracellular adhesion molecule-1 (ICAM-1) expression on the thyroid follicular cells of non-obese diabetic (NOD).H2h4 mice is enhanced by iodide treatment, which correlates with autoimmune thyroid disease in genetically susceptible NOD.H2h4 mice. The current study examines the mechanism of iodine-enhanced up-regulation of ICAM-1 on the surface of thyroid cells. We hypothesized that the up-regulation of ICAM-1 is due to a transient increase in production of reactive oxygen species (ROS). ROS may initiate signalling of the ICAM-1 gene promoter, enhancing up-regulated ICAM-1 protein on the cell surface. Single-cell suspensions of thyroid follicular cells from thyroiditis-susceptible NOD.H2h4 or non-susceptible BALB/c mice were treated in vitro with sodium iodide. Extracellular and intracellular ROS were assessed by luminol-derived chemiluminescence and flow cytometry assays respectively. Our results demonstrate that thyroid follicular cells of NOD.H2h4 generate higher levels of ROS compared with cells from non-susceptible strains of mice. Expression of a subunit protein of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, p67phox, was analysed by Western blot immunoassay. A constitutive expression of the p67 phox subunit protein was observed in NOD.H2h4 mice prior to iodine treatment. No such expression was found in BALB/c mice. Treatment of NOD.H2h4 thyroid cells with diphenyleneiodium, an inhibitor of NADPH oxidase, reduced generation of ROS and of ICAM-1 protein expression. Thus, thyrocytes from NOD.H2h4 mice produce enhanced levels of ROS that may be mediated by NADPH oxidase. Consequently, in NOD.H2h4 mice the ROS-induced signal for ICAM-1 up-regulation may contribute to mononuclear cellular infiltration of the thyroid gland and the progression of autoimmune thyroid disease.
Original language | English (US) |
---|---|
Pages (from-to) | 13-20 |
Number of pages | 8 |
Journal | Clinical and Experimental Immunology |
Volume | 152 |
Issue number | 1 |
DOIs | |
State | Published - Apr 2008 |
Keywords
- Adhesion molecules
- Autoimmunity
- Gene regulation
- Rodent
ASJC Scopus subject areas
- General Medicine