TY - JOUR
T1 - Intestinal NF-E2-related factor-2 expression and antioxidant activity changes in rats undergoing orthotopic liver autotransplantation
AU - Ge, Mian
AU - Chi, Xinjin
AU - Zhang, Ailan
AU - Luo, Gangjian
AU - Sun, Guoliang
AU - Xie, Hanbin
AU - Hei, Ziqing
PY - 2013/11
Y1 - 2013/11
N2 - Liver transplantation is known to trigger intestinal injuries. Oxidative damage that is induced by reactive oxygen species (ROS) plays a crucial role in ischemia-reperfusion injuries. NF-E2-related factor-2 (Nrf2) and its modulated antioxidant enzymes form the critical endogenous antioxidant system to scavenge ROS. The present study investigated the dynamic changes of intestinal ROS levels, Nrf2 expression and antioxidant enzyme activity following orthotopic liver autotransplantation (OLAT). Sprague-Dawley rats were randomly divided into five groups consisting of one sham group and four groups with rats that underwent OLAT and were evaluated following 4, 8, 16 and 24 h, respectively. The intestinal specimens were collected for histopathological examination and the detection of hydrogen peroxide (H2O2), hydroxyl radical (•OH), malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and the expression of Nrf2. The present study demonstrated that OLAT resulted in severe intestinal injury, which manifested as a significant change in the intestine pathological scores as early as 4 h and peaking at 8 h post-treatment. Oxidative stress was also revealed by the increase of the H2O2, •OH and MDA levels. Significant decreases were observed in the activity of SOD and CAT and a dramatic decrease occurred in the levels of GSH at 4 and 8 h post-treatment. All the parameters were restored gradually at 16 and 24 h post-treatment. The expression of Nrf2 in the intestinal tissues increased significantly at 4, 16 and 24 h following OLAT. The present study shows that an imbalance between oxidants and antioxidants contributes to intestinal oxidative injury, and that the upregulation of Nrf2 is not sufficient to withstand intestinal oxidative injury following OLAT.
AB - Liver transplantation is known to trigger intestinal injuries. Oxidative damage that is induced by reactive oxygen species (ROS) plays a crucial role in ischemia-reperfusion injuries. NF-E2-related factor-2 (Nrf2) and its modulated antioxidant enzymes form the critical endogenous antioxidant system to scavenge ROS. The present study investigated the dynamic changes of intestinal ROS levels, Nrf2 expression and antioxidant enzyme activity following orthotopic liver autotransplantation (OLAT). Sprague-Dawley rats were randomly divided into five groups consisting of one sham group and four groups with rats that underwent OLAT and were evaluated following 4, 8, 16 and 24 h, respectively. The intestinal specimens were collected for histopathological examination and the detection of hydrogen peroxide (H2O2), hydroxyl radical (•OH), malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and the expression of Nrf2. The present study demonstrated that OLAT resulted in severe intestinal injury, which manifested as a significant change in the intestine pathological scores as early as 4 h and peaking at 8 h post-treatment. Oxidative stress was also revealed by the increase of the H2O2, •OH and MDA levels. Significant decreases were observed in the activity of SOD and CAT and a dramatic decrease occurred in the levels of GSH at 4 and 8 h post-treatment. All the parameters were restored gradually at 16 and 24 h post-treatment. The expression of Nrf2 in the intestinal tissues increased significantly at 4, 16 and 24 h following OLAT. The present study shows that an imbalance between oxidants and antioxidants contributes to intestinal oxidative injury, and that the upregulation of Nrf2 is not sufficient to withstand intestinal oxidative injury following OLAT.
KW - Antioxidative enzyme
KW - Intestinal injury
KW - NF-E2-related factor-2
KW - Orthotopic liver transplantation
KW - Oxidative damage
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=84884483748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884483748&partnerID=8YFLogxK
U2 - 10.3892/ol.2013.1576
DO - 10.3892/ol.2013.1576
M3 - Article
AN - SCOPUS:84884483748
SN - 1792-1074
VL - 6
SP - 1307
EP - 1312
JO - Oncology Letters
JF - Oncology Letters
IS - 5
ER -