Intestinal epithelial Toll-like receptor 4 prevents metabolic syndrome by regulating interactions between microbes and intestinal epithelial cells in mice

P. Lu, C. P. Sodhi, Y. Yamaguchi, H. Jia, T. Prindle, W. B. Fulton, A. Vikram, K. J. Bibby, M. J. Morowitz, D. J. Hackam

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Little is known about the pathogenesis of metabolic syndrome, although Toll-like receptor 4 (TLR4) has been implicated. We investigated whether TLR4 in the intestinal epithelium regulates metabolic syndrome by coordinating interactions between the luminal microbiota and host genes that regulate metabolism. Mice lacking TLR4 in the intestinal epithelium (TLR4 "IEC), but not mice lacking TLR4 in myeloid cells nor mice lacking TLR4 globally, developed metabolic syndrome; these features were not observed in TLR4 "IEC mice given antibiotics. Metagenomic analysis of the fecal microbiota revealed differences between TLR4 "IEC and wild-type mice, while meta-transcriptome analysis of the microbiota showed that intestinal TLR4 affected the expression of microbial genes involved in the metabolism of lipids, amino acids, and nucleotides. Genes regulated by peroxisome proliferator-activated receptors (PPARs) and the antimicrobial peptide lysozyme were significantly downregulated in TLR4 "IEC mice, suggesting a mechanism by which intestinal TLR4 could exert its effects on the microbiota and metabolic syndrome. Supportingly, antibiotics prevented both downregulation of PPAR genes and the development of metabolic syndrome, while PPAR agonists prevented development of metabolic syndrome in TLR4 "IEC mice. Thus, intestinal epithelial TLR4 regulates metabolic syndrome through altered host-bacterial signaling, suggesting that microbial or PPAR-based strategies might have therapeutic potential for this disease.

Original languageEnglish (US)
Pages (from-to)727-740
Number of pages14
JournalMucosal Immunology
Volume11
Issue number3
DOIs
StatePublished - May 1 2018

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Fingerprint

Dive into the research topics of 'Intestinal epithelial Toll-like receptor 4 prevents metabolic syndrome by regulating interactions between microbes and intestinal epithelial cells in mice'. Together they form a unique fingerprint.

Cite this