TY - JOUR
T1 - Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription
AU - Nelson, N.
AU - Marks, M. S.
AU - Driggers, P. H.
AU - Ozato, K.
PY - 1993
Y1 - 1993
N2 - We previously isolated a cDNA clone encoding interferon consensus sequence-binding protein (ICSBP), a member of the interferon regulatory factor (IRF) family, that binds to the interferon (IFN)-stimulated response element (ISRE) of many IFN-regulated genes. In this investigation, we studied the functional role of ICSBP by transient cotransfection of ICSBP cDNA with IFN-responsive reporter genes into the human embryonal carcinoma cell line N- Tera2. These cells were shown not to express ICSBP or IRF-2, thus allowing functional analysis of transfected cDNAs. Cotransfection of ICSBP into cells treated with retinoic acid or any of the IFNs (α, β, or γ) repressed expression of a chloramphenicol acetyltransferase reporter driven by the major histocompatibility complex class I gene promoter. Similarly, ICSBP repressed expression of chloramphenicol acetyltransferase reporters driven by the ISREs of the 2'-5' oligoadenylate synthetase, guanylate-binding protein, and ISG-15 genes in IFN-treated cells. The repression was dependent on the presence of the ISRE in the reporter. Deletion analysis showed that the putative N-terminal DNA binding domain of ICSBP by itself is capable of mediating the repression. Using the same cotransfection conditions as for ICSBP, a similar repression of these reporters was observed with IRF-2. Finally, ICSBP repressed the IRF-1-mediated induction of major histocompatibility complex class I and IFN-β reporters in the absence of IFN or retinoic acid. Taken together, these results suggest that ICSBP is a negative regulatory factor capable of repressing transcription of target genes induced by IFN, retinoic acid, or IRF-1.
AB - We previously isolated a cDNA clone encoding interferon consensus sequence-binding protein (ICSBP), a member of the interferon regulatory factor (IRF) family, that binds to the interferon (IFN)-stimulated response element (ISRE) of many IFN-regulated genes. In this investigation, we studied the functional role of ICSBP by transient cotransfection of ICSBP cDNA with IFN-responsive reporter genes into the human embryonal carcinoma cell line N- Tera2. These cells were shown not to express ICSBP or IRF-2, thus allowing functional analysis of transfected cDNAs. Cotransfection of ICSBP into cells treated with retinoic acid or any of the IFNs (α, β, or γ) repressed expression of a chloramphenicol acetyltransferase reporter driven by the major histocompatibility complex class I gene promoter. Similarly, ICSBP repressed expression of chloramphenicol acetyltransferase reporters driven by the ISREs of the 2'-5' oligoadenylate synthetase, guanylate-binding protein, and ISG-15 genes in IFN-treated cells. The repression was dependent on the presence of the ISRE in the reporter. Deletion analysis showed that the putative N-terminal DNA binding domain of ICSBP by itself is capable of mediating the repression. Using the same cotransfection conditions as for ICSBP, a similar repression of these reporters was observed with IRF-2. Finally, ICSBP repressed the IRF-1-mediated induction of major histocompatibility complex class I and IFN-β reporters in the absence of IFN or retinoic acid. Taken together, these results suggest that ICSBP is a negative regulatory factor capable of repressing transcription of target genes induced by IFN, retinoic acid, or IRF-1.
UR - http://www.scopus.com/inward/record.url?scp=0027464265&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027464265&partnerID=8YFLogxK
U2 - 10.1128/MCB.13.1.588
DO - 10.1128/MCB.13.1.588
M3 - Article
C2 - 7678054
AN - SCOPUS:0027464265
SN - 0270-7306
VL - 13
SP - 588
EP - 599
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 1
ER -