TY - JOUR
T1 - Interactions between motor exploration and reinforcement learning
AU - Uehara, Shintaro
AU - Mawase, Firas
AU - Therrien, Amanda S.
AU - Cherry-Allen, Kendra M.
AU - Celnik, Pablo
N1 - Funding Information:
This work was supported by National Institutes of Health Grant 4R01 HD-073147-05 (to P. Celnik) and a Japan Society for the Promotion of Science Overseas Research Fellowship (to S. Uehara).
Publisher Copyright:
© 2019 the American Physiological Society.
PY - 2019/8
Y1 - 2019/8
N2 - Motor exploration, a trial-and-error process in search for better motor outcomes, is known to serve a critical role in motor learning. This is particularly relevant during reinforcement learning, where actions leading to a successful outcome are reinforced while unsuccessful actions are avoided. Although early on motor exploration is beneficial to finding the correct solution, maintaining high levels of exploration later in the learning process might be deleterious. Whether and how the level of exploration changes over the course of reinforcement learning, however, remains poorly understood. Here we evaluated temporal changes in motor exploration while healthy participants learned a reinforcement-based motor task. We defined exploration as the magnitude of trial-to-trial change in movements as a function of whether the preceding trial resulted in success or failure. Participants were required to find the optimal finger-pointing direction using binary feedback of success or failure. We found that the magnitude of exploration gradually increased over time when participants were learning the task. Conversely, exploration remained low in participants who were unable to correctly adjust their pointing direction. Interestingly, exploration remained elevated when participants underwent a second training session, which was associated with faster relearning. These results indicate that the motor system may flexibly upregulate the extent of exploration during reinforcement learning as if acquiring a specific strategy to facilitate subsequent learning. Also, our findings showed that exploration affects reinforcement learning and vice versa, indicating an interactive relationship between them. Reinforcement-based tasks could be used as primers to increase exploratory behavior leading to more efficient subsequent learning. NEW & NOTEWORTHY Motor exploration, the ability to search for the correct actions, is critical to learning motor skills. Despite this, whether and how the level of exploration changes over the course of training remains poorly understood. We showed that exploration increased and remained high throughout training of a reinforcement-based motor task. Interestingly, elevated exploration persisted and facilitated subsequent learning. These results suggest that the motor system upregulates exploration as if learning a strategy to facilitate subsequent learning.
AB - Motor exploration, a trial-and-error process in search for better motor outcomes, is known to serve a critical role in motor learning. This is particularly relevant during reinforcement learning, where actions leading to a successful outcome are reinforced while unsuccessful actions are avoided. Although early on motor exploration is beneficial to finding the correct solution, maintaining high levels of exploration later in the learning process might be deleterious. Whether and how the level of exploration changes over the course of reinforcement learning, however, remains poorly understood. Here we evaluated temporal changes in motor exploration while healthy participants learned a reinforcement-based motor task. We defined exploration as the magnitude of trial-to-trial change in movements as a function of whether the preceding trial resulted in success or failure. Participants were required to find the optimal finger-pointing direction using binary feedback of success or failure. We found that the magnitude of exploration gradually increased over time when participants were learning the task. Conversely, exploration remained low in participants who were unable to correctly adjust their pointing direction. Interestingly, exploration remained elevated when participants underwent a second training session, which was associated with faster relearning. These results indicate that the motor system may flexibly upregulate the extent of exploration during reinforcement learning as if acquiring a specific strategy to facilitate subsequent learning. Also, our findings showed that exploration affects reinforcement learning and vice versa, indicating an interactive relationship between them. Reinforcement-based tasks could be used as primers to increase exploratory behavior leading to more efficient subsequent learning. NEW & NOTEWORTHY Motor exploration, the ability to search for the correct actions, is critical to learning motor skills. Despite this, whether and how the level of exploration changes over the course of training remains poorly understood. We showed that exploration increased and remained high throughout training of a reinforcement-based motor task. Interestingly, elevated exploration persisted and facilitated subsequent learning. These results suggest that the motor system upregulates exploration as if learning a strategy to facilitate subsequent learning.
KW - Meta-learning
KW - Motor exploration
KW - Reinforcement learning
KW - Savings
KW - Trial and error
UR - http://www.scopus.com/inward/record.url?scp=85071353863&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071353863&partnerID=8YFLogxK
U2 - 10.1152/jn.00390.2018
DO - 10.1152/jn.00390.2018
M3 - Article
C2 - 31242063
AN - SCOPUS:85071353863
SN - 0022-3077
VL - 122
SP - 797
EP - 808
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 2
ER -