Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites

Joshua E. Kiss, Xin Gao, Joseph M. Krepp

Research output: Contribution to journalArticlepeer-review

Abstract

Background. Third-stage infective larvae (L3) of hookworms are in an obligatory state of developmental arrest that ends upon entering the definitive host, where they receive a signal that re-activates development. Recovery from the developmentally arrested dauer stage of Caenorhabditis elegans is analogous to the resumption of development during hookworm infection. Insulin-like signaling (ILS) mediates recovery from arrest in C. elegans and activation of hookworm dauer L3. In C. elegans, phosphorylation of the forkhead transcription factor DAF-16 in response to ILS creates binding cites for the 14-3-3 protein Ce-FTT-2, which translocates DAF-16 out of the nucleus, resulting in resumption of reproductive development. Results. To determine if hookworm 14-3-3 proteins play a similar role in L3 activation, hookworm FTT-2 was identified and tested for its ability to interact with A. caninum DAF-16 in vitro. The Ac-FTT-2 amino acid sequence was 91% identical to the Ce-FTT-2, and was most closely related to FTT-2 from other nematodes. Ac-FTT-2 was expressed in HEK 293T cells, and was recognized by an antibody against human 14-3-3 isoform. Reciprocal co-immunoprecipitations using anti-epitope tag antibodies indicated that Ac-FTT-2 interacts with Ac-DAF-16 when co-expressed in serum-stimulated HEK 293T cells. This interaction requires intact Akt consensus phosphorylation sites at serine107 and threonine312, but not serine381. Ac-FTT-2 was undetectable by Western blot in excretory/secretory products from serum-stimulated (activated) L3 or adult A. caninum. Conclusion. The results indicate that Ac-FTT-2 interacts with DAF-16 in a phosphorylation-site dependent manner, and suggests that Ac-FTT-2 mediates activation of L3 by binding Ac-DAF-16 during hookworm infection.

Original languageEnglish (US)
Article number21
JournalParasites and Vectors
Volume2
Issue number1
DOIs
StatePublished - 2009
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites'. Together they form a unique fingerprint.

Cite this