Integrative modeling of the cardiac ventricular myocyte

Raimond L. Winslow, Sonia Carmen Cortassa, Brian O'Rourke, Yasmin L. Hashambhoy, John Jeremy Rice, Joseph L. Greenstein

Research output: Contribution to journalReview articlepeer-review

20 Scopus citations


Cardiac electrophysiology is a disciplinewith a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research.

Original languageEnglish (US)
Pages (from-to)392-413
Number of pages22
JournalWiley Interdisciplinary Reviews: Systems Biology and Medicine
Issue number4
StatePublished - Jul 2011

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)


Dive into the research topics of 'Integrative modeling of the cardiac ventricular myocyte'. Together they form a unique fingerprint.

Cite this