TY - JOUR
T1 - Indole-3-carbinol as a chemopreventive agent in 2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine (PhIP) carcinogenesis
T2 - Inhibition of PhIP-DNA adduct formation, acceleration of PhIP metabolism, and induction of cytochrome P450 in female F344 rats
AU - Friesen, M. D.
AU - Ruch, R. J.
AU - Schut, H. A.J.
N1 - Funding Information:
This work was supported by a grant from the Cancer Research Foundation of America. We thank Dr Frank J. Gonzales (National Cancer Institute) for supplying the P450 1A1 and P450 1A2 probes.
PY - 2000/1
Y1 - 2000/1
N2 - The chemopreventive properties of dietary indole-3-carbinol (I3C) were evaluated by assessing its effect on DNA adduct formation and metabolism of the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and the induction of cytochromes P450 1A1 and -1A2 in female F344 rats. In experiment 1, animals on I3C diets (0, 0.02% or 0.1%, w/w) were treated by gavage with 1 mg/kg/day of PhIP for 23 days. On days 2, 9, 16 and 23, their 24-hr urine was collected and unmetabolized PhIP was measured by GC/MS. On day 24, the animals were sacrificed, and DNA from pancreas, spleen, white blood cells (WBCs), lung, colon, kidney, mammary epithelial cells, caecum, heart, small intestine, liver and stomach was isolated for determination of PhIP-DNA adduct levels by 32P-postlabelling assays. Except in the mammary gland, I3C diets significantly inhibited PhIP-DNA adduct formation in WBCs and in all organs, ranging from 34.7 to 67.7% with the 0.02% I3C diet to 68.4 to 95.3% with the 0.1% I3C diet. I3C diets also significantly decreased the concentration of urinary unmetabolized PhIP to 29.5-38.4% (0.02% I3C) and 12.8-17.8% (0.1% I3C) of values obtained with the I3C-free diet. In experiment 2, animals were either treated by intubation of I3C at 100 or 200 mg/kg for 2 consecutive days or given an I3C-containing diet (0.02% or 0.1%, w/w) for 2 weeks. The expression and activity of cytochromes P450 1A1 and -1A2 were studied by Northern blots, Western blots, and in vitro enzyme determinations. Both the expression and activity of these cytochromes were induced by all of the I3C treatments. It is concluded that, in the female F344 rat, dietary I3C inhibits PhIP-DNA adduct formation and accelerates PhIP metabolism, probably through induction of cytochromes P450 1A1 and -1A2. The chemopreventive properties of I3C in PhIP-induced carcinogenesis are probably mediated through enhancement of PhIP detoxification pathways. (C) 2000 Elsevier Science Ltd.
AB - The chemopreventive properties of dietary indole-3-carbinol (I3C) were evaluated by assessing its effect on DNA adduct formation and metabolism of the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and the induction of cytochromes P450 1A1 and -1A2 in female F344 rats. In experiment 1, animals on I3C diets (0, 0.02% or 0.1%, w/w) were treated by gavage with 1 mg/kg/day of PhIP for 23 days. On days 2, 9, 16 and 23, their 24-hr urine was collected and unmetabolized PhIP was measured by GC/MS. On day 24, the animals were sacrificed, and DNA from pancreas, spleen, white blood cells (WBCs), lung, colon, kidney, mammary epithelial cells, caecum, heart, small intestine, liver and stomach was isolated for determination of PhIP-DNA adduct levels by 32P-postlabelling assays. Except in the mammary gland, I3C diets significantly inhibited PhIP-DNA adduct formation in WBCs and in all organs, ranging from 34.7 to 67.7% with the 0.02% I3C diet to 68.4 to 95.3% with the 0.1% I3C diet. I3C diets also significantly decreased the concentration of urinary unmetabolized PhIP to 29.5-38.4% (0.02% I3C) and 12.8-17.8% (0.1% I3C) of values obtained with the I3C-free diet. In experiment 2, animals were either treated by intubation of I3C at 100 or 200 mg/kg for 2 consecutive days or given an I3C-containing diet (0.02% or 0.1%, w/w) for 2 weeks. The expression and activity of cytochromes P450 1A1 and -1A2 were studied by Northern blots, Western blots, and in vitro enzyme determinations. Both the expression and activity of these cytochromes were induced by all of the I3C treatments. It is concluded that, in the female F344 rat, dietary I3C inhibits PhIP-DNA adduct formation and accelerates PhIP metabolism, probably through induction of cytochromes P450 1A1 and -1A2. The chemopreventive properties of I3C in PhIP-induced carcinogenesis are probably mediated through enhancement of PhIP detoxification pathways. (C) 2000 Elsevier Science Ltd.
KW - Chemoprevention
KW - DNA adducts
KW - Food mutagens
KW - Heterocyclic amines
KW - Indole-3-carbinol
KW - PhIP
UR - http://www.scopus.com/inward/record.url?scp=0033964256&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033964256&partnerID=8YFLogxK
U2 - 10.1016/S0278-6915(99)00117-9
DO - 10.1016/S0278-6915(99)00117-9
M3 - Article
C2 - 10685010
AN - SCOPUS:0033964256
SN - 0278-6915
VL - 38
SP - 15
EP - 23
JO - Food and Chemical Toxicology
JF - Food and Chemical Toxicology
IS - 1
ER -