TY - JOUR
T1 - Increased generation of TRAP expressing multinucleated giant cells in patients with granulomatosis with polyangiitis
AU - Park, Jin Kyun
AU - Askin, Frederic
AU - Giles, Jon T.
AU - Halushka, Marc K.
AU - Rosen, Antony
AU - Levine, Stuart M.
PY - 2012/8/8
Y1 - 2012/8/8
N2 - Background: Tissue-infiltrating multinucleated giant cells (MNGs) within geographic necrosis are pathologic hallmarks of granulomatosis with polyangiitis (GPA). However, the origin, phenotype, and function of these cells in GPA remain undefined. Methodology/Principal Findings: MNG phenotype in GPA lung tissue was examined by immunohistochemistry using antibody directed against cathepsin K and calcitonin-receptor. Tartrate-resistant-acid-phosphatase (TRAP) expression was assessed using enzymatic color reaction. Peripheral blood mononuclear cells (PBMCs) from 13 GPA patients (5 with localized and 8 with systemic disease) and 11 healthy controls were cultured in the presence of RANKL and M-CSF for 9 days, and TRAP+ MNGs containing 3 or more nuclei were identified. GPA lung granulomata contained numerous MNGs that expressed osteoclastic TRAP and cathepsin K but not calcitonin receptors. In the presence of RANKL and M-CSF, PBMCs of GPA patients formed significantly more MNGs than healthy controls (114±29 MNG/well vs. 22±9 MNG/well, P = 0.02). In a subgroup analysis, patients with systemic disease generated significantly more MNGs than patients with localized disease (161±35 MNG/well vs. 39±27 MNG/well, P<0.01) or healthy controls (P<0.01). MNG production did not differ between localized GPA and control subjects (P = 0.96). Conclusions/Significance: MNGs in granulomata in the GPA lung express osteoclastic enzymes TRAP and cathepsin K. GPA patients have a higher propensity to form TRAP+ MNGs from peripheral blood than healthy controls. These data suggest that (i) the tendency to form MNGs is a component of the GPA phenotype itself, and (ii) that lesional MNGs might participate in the destructive process through their proteolytic enzymes.
AB - Background: Tissue-infiltrating multinucleated giant cells (MNGs) within geographic necrosis are pathologic hallmarks of granulomatosis with polyangiitis (GPA). However, the origin, phenotype, and function of these cells in GPA remain undefined. Methodology/Principal Findings: MNG phenotype in GPA lung tissue was examined by immunohistochemistry using antibody directed against cathepsin K and calcitonin-receptor. Tartrate-resistant-acid-phosphatase (TRAP) expression was assessed using enzymatic color reaction. Peripheral blood mononuclear cells (PBMCs) from 13 GPA patients (5 with localized and 8 with systemic disease) and 11 healthy controls were cultured in the presence of RANKL and M-CSF for 9 days, and TRAP+ MNGs containing 3 or more nuclei were identified. GPA lung granulomata contained numerous MNGs that expressed osteoclastic TRAP and cathepsin K but not calcitonin receptors. In the presence of RANKL and M-CSF, PBMCs of GPA patients formed significantly more MNGs than healthy controls (114±29 MNG/well vs. 22±9 MNG/well, P = 0.02). In a subgroup analysis, patients with systemic disease generated significantly more MNGs than patients with localized disease (161±35 MNG/well vs. 39±27 MNG/well, P<0.01) or healthy controls (P<0.01). MNG production did not differ between localized GPA and control subjects (P = 0.96). Conclusions/Significance: MNGs in granulomata in the GPA lung express osteoclastic enzymes TRAP and cathepsin K. GPA patients have a higher propensity to form TRAP+ MNGs from peripheral blood than healthy controls. These data suggest that (i) the tendency to form MNGs is a component of the GPA phenotype itself, and (ii) that lesional MNGs might participate in the destructive process through their proteolytic enzymes.
UR - http://www.scopus.com/inward/record.url?scp=84864706337&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864706337&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0042659
DO - 10.1371/journal.pone.0042659
M3 - Article
C2 - 22905158
AN - SCOPUS:84864706337
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 8
M1 - e42659
ER -