TY - JOUR
T1 - Increased close appositions between corticospinal tract axons and spinal sympathetic neurons after spinal cord injury in rats
AU - Pan, Baohan
AU - Kim, Esther J.
AU - Schramm, Lawrence P.
PY - 2005/12
Y1 - 2005/12
N2 - Treatments for spinal cord injury may promote new spinal cord synapses. However, the potential for new synapses between descending somatomotor and spinal sympathetic neurons has not been investigated. We studied rats with intact spinal cords and rats after a chronic, bilateral, dorsal spinal hemisection. We identified sympathetically related spinal neurons by transynaptic, retrograde transport of renally injected pseudorabies virus. We counted retrogradely labeled sympathetic preganglionic neurons (SPN) and putative sympathetic interneurons (IN) that, under light microscopy, appeared closely apposed by anterogradely labeled axons of the corticospinal tract (CST) and by axons descending from the well-established sympathetic regulatory region in the rostral ventrolateral medulla (RVLM). Spinal sympathetic neurons that were closely apposed by CST axons were significantly more numerous in lesioned rats than in unlesioned rats. CST axons closely apposed 5.4% of SPN and 10.3% of IN in rats with intact spinal cords, and 38.0% of SPN and 37.3% of IN in rats with chronically lesioned spinal cords. Further, CST appositions in SCI rats consisted of many more varicosities than those in uninjured rats. SPN and IN closely apposed by axons from the RVLM were not more numerous in lesioned rats. However, RVLM axons apposed many more SPN than IN in both control and lesioned rats. Therefore, RVLM sympathoexcitation may be mediated largely by direct synapses on SPN. Although we have not determined the functional significance of close appositions between the CST and spinal sympathetic neurons, we suggest that future studies of spinal cord repair and regeneration include an evaluation of potential, new, somatic-autonomic interactions.
AB - Treatments for spinal cord injury may promote new spinal cord synapses. However, the potential for new synapses between descending somatomotor and spinal sympathetic neurons has not been investigated. We studied rats with intact spinal cords and rats after a chronic, bilateral, dorsal spinal hemisection. We identified sympathetically related spinal neurons by transynaptic, retrograde transport of renally injected pseudorabies virus. We counted retrogradely labeled sympathetic preganglionic neurons (SPN) and putative sympathetic interneurons (IN) that, under light microscopy, appeared closely apposed by anterogradely labeled axons of the corticospinal tract (CST) and by axons descending from the well-established sympathetic regulatory region in the rostral ventrolateral medulla (RVLM). Spinal sympathetic neurons that were closely apposed by CST axons were significantly more numerous in lesioned rats than in unlesioned rats. CST axons closely apposed 5.4% of SPN and 10.3% of IN in rats with intact spinal cords, and 38.0% of SPN and 37.3% of IN in rats with chronically lesioned spinal cords. Further, CST appositions in SCI rats consisted of many more varicosities than those in uninjured rats. SPN and IN closely apposed by axons from the RVLM were not more numerous in lesioned rats. However, RVLM axons apposed many more SPN than IN in both control and lesioned rats. Therefore, RVLM sympathoexcitation may be mediated largely by direct synapses on SPN. Although we have not determined the functional significance of close appositions between the CST and spinal sympathetic neurons, we suggest that future studies of spinal cord repair and regeneration include an evaluation of potential, new, somatic-autonomic interactions.
KW - Axon collaterals
KW - Rostral ventrolateral medulla
KW - Spinal cord regeneration
KW - Sympathetic preganglionic neurons
KW - Sympathetically related interneurons
UR - http://www.scopus.com/inward/record.url?scp=31044456148&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=31044456148&partnerID=8YFLogxK
U2 - 10.1089/neu.2005.22.1399
DO - 10.1089/neu.2005.22.1399
M3 - Article
C2 - 16379578
AN - SCOPUS:31044456148
SN - 0897-7151
VL - 22
SP - 1399
EP - 1410
JO - Central Nervous System Trauma
JF - Central Nervous System Trauma
IS - 12
ER -