Abstract
NMDA (N-methyl-D-aspartate) receptors are excitatory neurotransmitter receptors in the brain critical for synaptic plasticity and neuronal development. These receptors are Ca2+-permeable glutamate-gated ion channels whose physiological properties are regulated by intracellular Ca2+. We report here the purification of a 20 kDa protein identified as calmodulin that interacts with the NR1 subunit of the NMDA receptor. Calmodulin binding to the NR1 subunit is Ca2+ dependent and occurs with homomeric NR1 complexes, heteromeric NR1/NR2 subunit complexes, and NMDA receptors from brain. Furthermore, calmodulin binding to NR1 causes a 4-fold reduction in NMDA channel open probability. These results demonstrate that NMDA receptor function can be regulated by direct binding of calmodulin to the NR1 subunit, and suggest a possible mechanism for activity-dependent feedback inhibition and Ca2+-dependent inactivation of NMDA receptors.
Original language | English (US) |
---|---|
Pages (from-to) | 745-755 |
Number of pages | 11 |
Journal | Cell |
Volume | 84 |
Issue number | 5 |
DOIs | |
State | Published - Mar 8 1996 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)