In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


We developed a method to measure the 3-dimensional (3D) strain field in the optic nerve head (ONH) in vivo between two intraocular pressures (IOP). Radial optical coherence tomography (OCT) scans were taken of the ONH of 5 eyes from 5 glaucoma patients before and after IOP-lowering surgery and from 5 eyes from 3 glaucoma suspect patients before and after raising IOP by wearing tight-fitting swimming goggles. Scans taken at higher and lower IOP were compared using a custom digital volume correlation (DVC) algorithm to calculate strains in the anterior lamina cribrosa (ALC), retina, and choroid. Changes in anterior lamina depth (ALD) relative to Bruch's membrane were also analyzed. Average displacement error was estimated to be subpixel and strain errors were smaller than 0.37%. Suturelysis decreased IOP by 9–20 mmHg and decreased compressive anterior-posterior strain Ezz in the ALC by 0.76% (p=0.002,n=5). Goggle-wearing increased IOP by 3–4 mmHg and produced compressive Ezz in the ALC (-0.32%,p=0.001,n=5). Greater IOP decrease was associated with greater ALD change (p=0.047,n=10) and greater strains in the ALC (Ezz:p=0.002,n=10). A deepening of ALD was associated with lower IOP and greater ALC strains (p⩽0.045,n=10). A DVC-based method to measure strains from OCT images caused by IOP changes as small as 2.3 mmHg provides preliminary evidence that ALD is shallower and ALC strains are less compressive at higher IOP and that ALD change is associated with ALC strains. Statement of Significance: Glaucoma causes vision loss through progressive damage of the retinal ganglion axons at the lamina cribrosa, a connective tissue structure in the optic nerve head that supports the axons as they pass through the eye wall. It is hypothesized that strains caused by intraocular pressure (IOP) may initiate this damage, but few studies have measured the strain response to pressure of the optic nerve head in patients. We present a method to measure the 3D displacement and strain field in the optic nerve head caused by IOP alteration in glaucoma patients using clinically available images. We used this method to measure strain within the optic nerve head from IOP changes caused by glaucoma surgery and wearing tight-fitting swimming goggles.

Original languageEnglish (US)
Pages (from-to)385-399
Number of pages15
JournalActa Biomaterialia
StatePublished - Sep 15 2019


  • Digital volume correlation
  • Glaucoma
  • Intraocular pressure
  • Lamina cribrosa
  • Optic nerve head

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology


Dive into the research topics of 'In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation'. Together they form a unique fingerprint.

Cite this