TY - JOUR
T1 - In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta
AU - Govindarajan, Rajgopal
AU - Bakken, Aimee H.
AU - Hudkins, Kelly L.
AU - Lai, Yurong
AU - Casado, F. Javier
AU - Pastor-Anglada, Marçal
AU - Tse, Chung Ming
AU - Hayashi, Jun
AU - Unadkat, Jashvant D.
PY - 2007/11
Y1 - 2007/11
N2 - To better understand the role of human equilibrative (hENTs) and concentrative (hCNTs) nucleoside transporters in physiology and pharmacology, we investigated the regional, cellular, and spatial distribution of two hCNTs (hCNT1 and hCNT2) and two hENTs (hENT1 and hENT2) in four human tissues. Using in situ hybridization and immunohistochemical techniques, we found that the duodenum expressed hCNT1 and hCNT2 mRNAs in enterocytes and hENT1 and hENT2 mRNAs in crypt cells. In these cells, the hCNT and hENT proteins were predominantly localized in the apical and lateral membrane, respectively. Hepatocytes expressed higher levels of mRNAs of hENT1, hCNT1, and hENT2 than of hCNT2 and expressed all these proteins at hepatocyte cell borders and in the cytoplasm. While the kidney expressed hCNT1 and hCNT2 mRNAs in the proximal tubules, hENT1 and hENT2 mRNAs were present in the distal tubules, glomeruli, endothelial cells, and vascular smooth muscle cells. Proximal tubules adjacent to corticomedullary junctions expressed hENT1, hCNT1, and hCNT2 mRNA. Immunolocalization studies revealed predominant localization of hCNTs in the brush-border membrane of the proximal tubular epithelial cells and hENTs in the basolateral membrane of the distal tubular epithelial cells. Chorionic villi sections of human term placenta expressed mRNAs and proteins for hENT1 and hENT2 but only mRNA for hCNT2. Immunolocalization studies showed presence of hENT1 in the brush-border membrane of the syncytiotrophoblasts. These data are critical for a better understanding of the role of nucleoside transporters in the physiological and pharmacological effects of nucleosides and nucleoside drugs, respectively.
AB - To better understand the role of human equilibrative (hENTs) and concentrative (hCNTs) nucleoside transporters in physiology and pharmacology, we investigated the regional, cellular, and spatial distribution of two hCNTs (hCNT1 and hCNT2) and two hENTs (hENT1 and hENT2) in four human tissues. Using in situ hybridization and immunohistochemical techniques, we found that the duodenum expressed hCNT1 and hCNT2 mRNAs in enterocytes and hENT1 and hENT2 mRNAs in crypt cells. In these cells, the hCNT and hENT proteins were predominantly localized in the apical and lateral membrane, respectively. Hepatocytes expressed higher levels of mRNAs of hENT1, hCNT1, and hENT2 than of hCNT2 and expressed all these proteins at hepatocyte cell borders and in the cytoplasm. While the kidney expressed hCNT1 and hCNT2 mRNAs in the proximal tubules, hENT1 and hENT2 mRNAs were present in the distal tubules, glomeruli, endothelial cells, and vascular smooth muscle cells. Proximal tubules adjacent to corticomedullary junctions expressed hENT1, hCNT1, and hCNT2 mRNA. Immunolocalization studies revealed predominant localization of hCNTs in the brush-border membrane of the proximal tubular epithelial cells and hENTs in the basolateral membrane of the distal tubular epithelial cells. Chorionic villi sections of human term placenta expressed mRNAs and proteins for hENT1 and hENT2 but only mRNA for hCNT2. Immunolocalization studies showed presence of hENT1 in the brush-border membrane of the syncytiotrophoblasts. These data are critical for a better understanding of the role of nucleoside transporters in the physiological and pharmacological effects of nucleosides and nucleoside drugs, respectively.
KW - Expression
KW - Human tissue
KW - Localization
UR - http://www.scopus.com/inward/record.url?scp=36049006403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36049006403&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00293.2007
DO - 10.1152/ajpregu.00293.2007
M3 - Article
C2 - 17761511
AN - SCOPUS:36049006403
SN - 0363-6119
VL - 293
SP - R1809-R1822
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 5
ER -