Improving Amide Proton Transfer-Weighted MRI Reconstruction Using T2-Weighted Images

Puyang Wang, Pengfei Guo, Jianhua Lu, Jinyuan Zhou, Shanshan Jiang, Vishal M. Patel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Current protocol of Amide Proton Transfer-weighted (APTw) imaging commonly starts with the acquisition of high-resolution T2-weighted (T2w) images followed by APTw imaging at particular geometry and locations (i.e. slice) determined by the acquired T2w images. Although many advanced MRI reconstruction methods have been proposed to accelerate MRI, existing methods for APTw MRI lacks the capability of taking advantage of structural information in the acquired T2w images for reconstruction. In this paper, we present a novel APTw image reconstruction framework that can accelerate APTw imaging by reconstructing APTw images directly from highly undersampled k-space data and corresponding T2w image at the same location. The proposed framework starts with a novel sparse representation-based slice matching algorithm that aims to find the matched T2w slice given only the undersampled APTw image. A Recurrent Feature Sharing Reconstruction network (RFS-Rec) is designed to utilize intermediate features extracted from the matched T2w image by a Convolutional Recurrent Neural Network (CRNN), so that the missing structural information can be incorporated into the undersampled APT raw image thus effectively improving the image quality of the reconstructed APTw image. We evaluate the proposed method on two real datasets consisting of brain data from rats and humans. Extensive experiments demonstrate that the proposed RFS-Rec approach can outperform the state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages3-12
Number of pages10
ISBN (Print)9783030597122
DOIs
StatePublished - 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: Oct 4 2020Oct 8 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12262 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period10/4/2010/8/20

Keywords

  • Amide proton transfer imaging
  • Image reconstruction
  • Magnetic resonance imaging

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Improving Amide Proton Transfer-Weighted MRI Reconstruction Using T2-Weighted Images'. Together they form a unique fingerprint.

Cite this