Improved contrast in laser-diode-based photoacoustic images with short-lag spatial coherence beamforming

Muyinatu A.Lediju Bell, Guo Xiaoyu, Hyun Jae Kang, Emad Boctor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Pulsed laser diodes (PLDs) enable photoacoustic imaging with lower cost, increased portability, and higher frame rates compared to conventional Q-switched Nd:YAG lasers. However, the main disadvantage of the PLD is its low peak power, which necessitates averaging thousands of photoacoustic signals to achieve signal-to-noise ratios that are comparable to those produced by an Nd:YAG laser. The averaging process degrades temporal resolution with minimal improvements to image contrast. This work is the first to investigate the use of a PLD and short-lag spatial coherence (SLSC) beamforming to display high-contrast photoacoustic images with minimal to no signal averaging required. The mean contrast in single photoacoustic images of targets as deep as 5-15 mm from the surface was improved by 11-17 dB with SLSC beamforming when compared to conventional delay-and-sum (DAS) beamforming of the same data. The SLSC correlation kernel was adjusted based on laser pulse lengths to demonstrate applicability to coded excitation. Results suggest that coherence-based beamforming can overcome current limitations with real-time PLD-based photoacoustic imaging.

Original languageEnglish (US)
Title of host publicationIEEE International Ultrasonics Symposium, IUS
PublisherIEEE Computer Society
Pages37-40
Number of pages4
ISBN (Electronic)9781479970490
DOIs
StatePublished - Oct 20 2014
Event2014 IEEE International Ultrasonics Symposium, IUS 2014 - Chicago, United States
Duration: Sep 3 2014Sep 6 2014

Publication series

NameIEEE International Ultrasonics Symposium, IUS
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Other

Other2014 IEEE International Ultrasonics Symposium, IUS 2014
Country/TerritoryUnited States
CityChicago
Period9/3/149/6/14

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Improved contrast in laser-diode-based photoacoustic images with short-lag spatial coherence beamforming'. Together they form a unique fingerprint.

Cite this