TY - JOUR
T1 - Impaired shear stress-induced nitric oxide production through decreased NOS phosphorylation contributes to age-related vascular stiffness
AU - Soucy, Kevin G.
AU - Ryoo, Sungwoo
AU - Benjo, Alexandre
AU - Hyun, Kyo Lim
AU - Gupta, Gaurav
AU - Sohi, Jayson S.
AU - Elser, Jeremy
AU - Aon, Miguel A.
AU - Nyhan, Daniel
AU - Shoukas, Artin A.
AU - Berkowitz, Dan E.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/12
Y1 - 2006/12
N2 - Endothelial dysfunction and increased arterial stiffness contribute to multiple vascular diseases and are hallmarks of cardiovascular aging. To investigate the effects of aging on shear stress-induced endothelial nitric oxide (NO) signaling and aortic stiffness, we studied young (3-4 mo) and old (22-24 mo) rats in vivo and in vitro. Old rat aorta demonstrated impaired vasorelaxation to acetylcholine and sphingosine 1-phosphate, while responses to sodium nitroprusside were similar to those in young aorta. In a customized flow chamber, aortic sections preincubated with the NO-sensitive dye, 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, were subjected to steady-state flow with shear stress increase from 0.4 to 6.4 dyn/cm2. In young aorta, this shear step amplified 4-amino-5-methylamino-2′,7′-difluorofluorescein fluorescence rate by 70.6 ± 13.9%, while the old aorta response was significantly attenuated (23.6 ± 11.3%, P < 0.05). Endothelial NO synthase (eNOS) inhibition, by NG-monomethyl-L-arginine, abolished any fluorescence rate increase. Furthermore, impaired NO production was associated with a significant reduction of the phosphorylated-Akt-to-total-Akt ratio in aged aorta (P < 0.05). Correspondingly, the phosphorylated-to-total-eNOS ratio in aged aortic endothelium was markedly lower than in young endothelium (P < 0.001). Lastly, pulse wave velocity, an in vivo measure of vascular stiffness, in old rats (5.99 ± 0.191 m/s) and in Nω-nitro-L-arginine methyl ester-treated rats (4.96 ± 0.118 m/s) was significantly greater than that in young rats (3.64 ± 0.068 m/s, P < 0.001). Similarly, eNOS-knockout mice demonstrated higher pulse wave velocity than wild-type mice (P < 0.001). Thus impaired Akt-dependent NO synthase activation is a potential mechanism for decreased NO bioavailability and endothelial dysfunction, which likely contributes to age-associated vascular stiffness.
AB - Endothelial dysfunction and increased arterial stiffness contribute to multiple vascular diseases and are hallmarks of cardiovascular aging. To investigate the effects of aging on shear stress-induced endothelial nitric oxide (NO) signaling and aortic stiffness, we studied young (3-4 mo) and old (22-24 mo) rats in vivo and in vitro. Old rat aorta demonstrated impaired vasorelaxation to acetylcholine and sphingosine 1-phosphate, while responses to sodium nitroprusside were similar to those in young aorta. In a customized flow chamber, aortic sections preincubated with the NO-sensitive dye, 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, were subjected to steady-state flow with shear stress increase from 0.4 to 6.4 dyn/cm2. In young aorta, this shear step amplified 4-amino-5-methylamino-2′,7′-difluorofluorescein fluorescence rate by 70.6 ± 13.9%, while the old aorta response was significantly attenuated (23.6 ± 11.3%, P < 0.05). Endothelial NO synthase (eNOS) inhibition, by NG-monomethyl-L-arginine, abolished any fluorescence rate increase. Furthermore, impaired NO production was associated with a significant reduction of the phosphorylated-Akt-to-total-Akt ratio in aged aorta (P < 0.05). Correspondingly, the phosphorylated-to-total-eNOS ratio in aged aortic endothelium was markedly lower than in young endothelium (P < 0.001). Lastly, pulse wave velocity, an in vivo measure of vascular stiffness, in old rats (5.99 ± 0.191 m/s) and in Nω-nitro-L-arginine methyl ester-treated rats (4.96 ± 0.118 m/s) was significantly greater than that in young rats (3.64 ± 0.068 m/s, P < 0.001). Similarly, eNOS-knockout mice demonstrated higher pulse wave velocity than wild-type mice (P < 0.001). Thus impaired Akt-dependent NO synthase activation is a potential mechanism for decreased NO bioavailability and endothelial dysfunction, which likely contributes to age-associated vascular stiffness.
KW - Aging
KW - Endothelial dysfunction
KW - Mechanotransduction
KW - Nitric oxide synthase
KW - Serine/threonine kinase Akt
UR - http://www.scopus.com/inward/record.url?scp=33845400838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845400838&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00138.2006
DO - 10.1152/japplphysiol.00138.2006
M3 - Article
C2 - 17106067
AN - SCOPUS:33845400838
SN - 8750-7587
VL - 101
SP - 1751
EP - 1759
JO - Journal of applied physiology
JF - Journal of applied physiology
IS - 6
ER -