TY - JOUR
T1 - Identifying cholera "hotspots" in Uganda
T2 - An analysis of cholera surveillance data from 2011 to 2016
AU - Bwire, Godfrey
AU - Ali, Mohammad
AU - Sack, David A.
AU - Nakinsige, Anne
AU - Naigaga, Martha
AU - Debes, Amanda K.
AU - Ngwa, Moise C.
AU - Brooks, W. Abdullah
AU - Orach, Christopher Garimoi
N1 - Funding Information:
Financial support for the data analysis and preparation of the manuscript was provided by the Delivering Oral Vaccine Effectively (DOVE) project. DOVE is supported by the Bill and Melinda Gates Foundation (Grant number OPP1148763) and administered through the Johns Hopkins Bloomberg School of Public Health. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2017, Public Library of Science. All rights reserved.
PY - 2017/11
Y1 - 2017/11
N2 - Background Despite advance in science and technology for prevention, detection and treatment of chol-era, this infectious disease remains a major public health problem in many countries in sub-Saharan Africa, Uganda inclusive. The aim of this study was to identify cholera hotspots in Uganda to guide the development of a roadmap for prevention, control and elimination of cholera in the country. Methodology/Principle findings We obtained district level confirmed cholera outbreak data from 2011 to 2016 from the Ministry of Health, Uganda. Population and rainfall data were obtained from the Uganda Bureau of Statistics, and water, sanitation and hygiene data from the Ministry of Water and Environ-ment. A spatial scan test was performed to identify the significantly high risk clusters. Cholera hotspots were defined as districts whose center fell within a significantly high risk cluster or where a significantly high risk cluster was completely superimposed onto a district. A zero-inflated negative binomial regression model was employed to identify the district level risk factors for cholera. In total 11,030 cases of cholera were reported during the 6-year period. 37(33%) of 112 districts reported cholera outbreaks in one of the six years, and 20 (18%) districts experienced cholera at least twice in those years. We identified 22 districts as high risk for cholera, of which 13 were near a border of Democratic Republic of Congo (DRC), while 9 districts were near a border of Kenya. The relative risk of having cholera inside the high-risk districts (hotspots) were 2 to 22 times higher than elsewhere in the coun-try. In total, 7 million people were within cholera hotspots. The negative binomial component of the ZINB model shows people living near a lake or the Nile river were at increased risk for cholera (incidence rate ratio, IRR = 0.98, 95% CI: 0.97 to 0.99, p <.01); people living near the border of DRC/Kenya or higher incidence rate in the neighboring districts were increased risk for cholera in a district (IRR = 0.99, 95% CI: 0.98 to 1.00, p =.02 and IRR = 1.02, 95% CI: 1.01 to 1.03, p <.01, respectively). The zero inflated component of the ZINB model yielded shorter distance to Kenya or DRC border, higher incidence rate in the neighboring districts, and higher annual rainfall in the district were associated with the risk of having cholera in the district. Conclusions/significance The study identified cholera hotspots during the period 2011–2016. The people located near the international borders, internationally shared lakes and river Nile were at higher risk for cholera outbreaks than elsewhere in the country. Targeting cholera interventions to these locations could prevent and ultimately eliminate cholera in Uganda.
AB - Background Despite advance in science and technology for prevention, detection and treatment of chol-era, this infectious disease remains a major public health problem in many countries in sub-Saharan Africa, Uganda inclusive. The aim of this study was to identify cholera hotspots in Uganda to guide the development of a roadmap for prevention, control and elimination of cholera in the country. Methodology/Principle findings We obtained district level confirmed cholera outbreak data from 2011 to 2016 from the Ministry of Health, Uganda. Population and rainfall data were obtained from the Uganda Bureau of Statistics, and water, sanitation and hygiene data from the Ministry of Water and Environ-ment. A spatial scan test was performed to identify the significantly high risk clusters. Cholera hotspots were defined as districts whose center fell within a significantly high risk cluster or where a significantly high risk cluster was completely superimposed onto a district. A zero-inflated negative binomial regression model was employed to identify the district level risk factors for cholera. In total 11,030 cases of cholera were reported during the 6-year period. 37(33%) of 112 districts reported cholera outbreaks in one of the six years, and 20 (18%) districts experienced cholera at least twice in those years. We identified 22 districts as high risk for cholera, of which 13 were near a border of Democratic Republic of Congo (DRC), while 9 districts were near a border of Kenya. The relative risk of having cholera inside the high-risk districts (hotspots) were 2 to 22 times higher than elsewhere in the coun-try. In total, 7 million people were within cholera hotspots. The negative binomial component of the ZINB model shows people living near a lake or the Nile river were at increased risk for cholera (incidence rate ratio, IRR = 0.98, 95% CI: 0.97 to 0.99, p <.01); people living near the border of DRC/Kenya or higher incidence rate in the neighboring districts were increased risk for cholera in a district (IRR = 0.99, 95% CI: 0.98 to 1.00, p =.02 and IRR = 1.02, 95% CI: 1.01 to 1.03, p <.01, respectively). The zero inflated component of the ZINB model yielded shorter distance to Kenya or DRC border, higher incidence rate in the neighboring districts, and higher annual rainfall in the district were associated with the risk of having cholera in the district. Conclusions/significance The study identified cholera hotspots during the period 2011–2016. The people located near the international borders, internationally shared lakes and river Nile were at higher risk for cholera outbreaks than elsewhere in the country. Targeting cholera interventions to these locations could prevent and ultimately eliminate cholera in Uganda.
UR - http://www.scopus.com/inward/record.url?scp=85041248609&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041248609&partnerID=8YFLogxK
U2 - 10.1371/JOURNAL.PNTD.0006118
DO - 10.1371/JOURNAL.PNTD.0006118
M3 - Article
C2 - 29284003
AN - SCOPUS:85041248609
SN - 1935-2727
VL - 11
JO - PLoS neglected tropical diseases
JF - PLoS neglected tropical diseases
IS - 12
M1 - e0006118
ER -