Identification and staging of B-cell acute lymphoblastic leukemia using quantitative phase imaging and machine learning

Vinay Ayyappan, Alex Chang, Chi Zhang, Santosh Kumar Paidi, Rosalie Bordett, Tiffany Liang, Ishan Barman, Rishikesh Pandey

Research output: Contribution to journalArticlepeer-review

Abstract

Identification and classification of leukemia cells in a rapid and label-free fashion is clinically challenging and thus presents a prime arena for implementing new diagnostic tools. Quantitative phase imaging, which maps optical path length delays introduced by the specimen, has been demonstrated to discern cellular phenotypes based on differential morphological attributes. Rapid acquisition capability and the availability of label-free images with high information content have enabled researchers to use machine learning (ML) to reveal latent features. We developed a set of ML classifiers, including convolutional neural networks, to discern healthy B cells from lymphoblasts and classify stages of B cell acute lymphoblastic leukemia. Here, we show that the average dry mass and volume of normal B cells are lower than those of cancerous cells and that these morphologic parameters increase further alongside disease progression. We find that the relaxed training requirements of a ML approach are conducive to the classification of cell type, with minimal space, training time, and memory requirements. Our findings pave the way for a larger study on clinical samples of acute lymphoblastic leukemia, with the overarching goal of its broader use in hematopathology, where the prospect of objective diagnoses with minimal sample preparation remains highly desirable.

Original languageEnglish (US)
Pages (from-to)3281-3289
Number of pages9
JournalACS sensors
Volume5
Issue number10
DOIs
StatePublished - Oct 23 2020

Keywords

  • Classification
  • Deep learning
  • Label-free imaging
  • Leukemia
  • Quantitative phase imaging

ASJC Scopus subject areas

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Identification and staging of B-cell acute lymphoblastic leukemia using quantitative phase imaging and machine learning'. Together they form a unique fingerprint.

Cite this