TY - JOUR
T1 - Ibea and ompa of Escherichia coli K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells
AU - Maruvada, Ravi
AU - Kim, Kwang Sik
PY - 2012/6
Y1 - 2012/6
N2 - Meningitis-causing Escherichia coli K1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved in E. coli entry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causing E. coli K1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not (-Pix, was involved in E. coli K1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined in E. coli K1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreased E. coli invasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response to E. coli is under the control of STAT3. More importantly, two E. coli determinants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specific E. coli determinants regulate a novel mechanism of STAT3 cross talk with Rac1 in E. coli K1 invasion of HBMEC.
AB - Meningitis-causing Escherichia coli K1 internalization of the blood-brain barrier is required for penetration into the brain, but the host-microbial interactions involved in E. coli entry of the blood-brain barrier remain incompletely understood. We show here that a meningitis-causing E. coli K1 strain RS218 activates Rac1 (GTP-Rac1) of human brain microvascular endothelial cells (HBMEC) in a time-dependent manner. Both activation and bacterial invasion were significantly inhibited in the presence of a Rac1 inhibitor. We further showed that the guanine nucleotide exchange factor Vav2, not (-Pix, was involved in E. coli K1-mediated Rac1 activation. Since activated STAT3 is known to bind GTP-Rac1, the relationship between STAT3 and Rac1 was examined in E. coli K1 invasion of HBMEC. Downregulation of STAT3 resulted in significantly decreased E. coli invasion compared to control HBMEC, as well as a corresponding decrease in GTP-Rac1, suggesting that Rac1 activation in response to E. coli is under the control of STAT3. More importantly, two E. coli determinants contributing to HBMEC invasion, IbeA and OmpA, were shown to affect both Rac1 activation and their association with STAT3. These findings demonstrate for the first time that specific E. coli determinants regulate a novel mechanism of STAT3 cross talk with Rac1 in E. coli K1 invasion of HBMEC.
UR - http://www.scopus.com/inward/record.url?scp=85047689104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047689104&partnerID=8YFLogxK
U2 - 10.1128/IAI.06320-11
DO - 10.1128/IAI.06320-11
M3 - Article
C2 - 22451524
AN - SCOPUS:85047689104
SN - 0019-9567
VL - 80
SP - 2035
EP - 2041
JO - Infection and immunity
JF - Infection and immunity
IS - 6
ER -