Hyperhomocysteinemia and neurologic disorders: A review

Ramin Ansari, Ali Mahta, Eric Mallack, Jin Jun Luo

Research output: Contribution to journalReview articlepeer-review

Abstract

Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. It has a physiologic role in DNA metabolism via methylation, a process governed by the presentation of folate, and vitamins B6 and B12. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy (eHcy) can be caused by deficiency of either vitamin B12 or folate, or a combination thereof. Certain genetic factors also cause eHcy, such as C667T substitution of the gene encoding methylenetetrahydrofolate re-ductase. eHcy has been observed in several medical conditions, such as cardiovascular disorders, atherosclerosis, myocardial infarction, stroke, minimal cognitive impairment, dementia, Parkinson’s disease, multiple sclerosis, epilepsy, and eclampsia. There is evidence from laboratory and clinical studies that Hcy, and especially eHcy, exerts direct toxic effects on both the vascular and nervous systems. This article provides a review of the current literature on the possible roles of eHcy relevant to various neurologic disorders.

Original languageEnglish (US)
Pages (from-to)281-288
Number of pages8
JournalJournal of Clinical Neurology (Korea)
Volume10
Issue number4
DOIs
StatePublished - Oct 1 2014
Externally publishedYes

Keywords

  • Hyperhomocysteinemia
  • Neurologic disorders
  • Pregnancy

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Hyperhomocysteinemia and neurologic disorders: A review'. Together they form a unique fingerprint.

Cite this